doi:10.7515/JEE201602010

封管法制备有机碳稳定同位素样品 存在的问题和改进

曹蕴宁¹,刘卫国^{1,2}

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2.西安交通大学 人居环境与建筑工程学院,西安 710049)

摘 要:有机碳稳定同位素的高精度测定是利用地质样品有机碳同位素研究气候和植被变化等的基础。通过实验发现低有机碳含量样品同位素测定误差相对较大,其中样品收集过程是主要的影响因素之一。本文针对这个问题,主要从杂质气体干扰入手,在一步冷冻分离 CO₂ 和 H₂O,或分步冷冻分离 CO₂ 和 H₂O 的收集方法,以及改变收样管体积三方面进行条件实验研究,讨论了封管法制备有机碳稳定同位素样品气体收集过程对有机碳稳定同位素组成的影响。结果表明: (1) CO₂ 气体的纯化收集是封管法制备有机碳稳定同位素样品的一个重要步骤,收集时杂质气体含量越高,对样品有机碳稳定同位素组成的影响越大;(2)在相同的杂质气体背景条件下,与一步冷冻分离 CO₂ 和 H₂O 的方法相比,分步冷冻 CO₂ 和 H₂O 的方法能够显著减小杂质气体对有机碳稳定同位素测定的影响;(3) 小体积收样管能够显著提高有机碳稳定同位素样品的离子流强度,进而提高低有机碳含量样品的稳定碳同位素测定精度。 关键词:有机碳稳定同位素;样品制备;封管法

Problems and improvements of preparing organic carbon stable isotope samples by sealing tube method

CAO Yunning¹, LIU Weiguo^{1, 2}

(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China;

2. School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: *Background, aim, and scope* High precision measurement of organic carbon stable isotope $(\delta^{13}C)$ is the basis for its application in the reconstruction of past changes in climate and vegetation types. It has been observed that the measurement error of $\delta^{13}C$ for samples with low organic carbon content was relatively large, partly due to the problem in the CO₂ collecting process. To solve this problem, the effect of CO₂ gas collecting process on the $\delta^{13}C$ of organic carbon was investigated from three aspects: impurity gas on the process of CO₂ freezing, freezing CO₂ and H₂O by one step and freezing CO₂ and H₂O step by step, and the effect of collection tubes with different volumes. *Materials and methods* The national standard material (GBW04407) and different types of natural samples were analyzed using sealed tube method to study the effect of CO₂ gas collecting process on the $\delta^{13}C$ of

收稿日期: 2015-11-17; 录用日期: 2015-12-07

Received Date: 2015-11-17; Accepted Date: 2015-12-07

基金项目: 国家自然科学基金项目(41303010)

Foundation Item: National Natural Science Foundation of China (41303010)

通信作者: 刘卫国, E-mail: liuwg@loess.llqg.ac.cn

Corresponding Author: LIU Weiguo, E-mail: liuwg@loess.llqg.ac.cn

organic carbon. The natural samples were treated with 2 mol·L⁻¹ HCl for 24 h at room temperature to remove carbonates and acid soluble organic material. The treated samples were washed with distilled water and dried at 40° C, and then were combusted for at least 2.5 h at 850°C in an evacuated and sealed quartz tube in the presence of Cu oxide, Cu wire and Pt wire. The CO₂ was then purified and isolated by cryogenic distillation for C isotope analysis. To investigate the effect of CO_2 gas collecting process on the δ^{13} C of organic carbon, the air pressure in the vacuum line was artificially adjusted within the range of 0.05 mbar to 15.7 mbar; two CO₂ freezing methods were used, freezing CO₂ and H_2O by one step and freezing CO₂ and H₂O step by step; and two kinds of collection tubes with different volumes were used. **Results** The results showed that: (1) in the CO₂ gas collection process, the δ^{13} C values of standard material (GBW04407) were -22.61‰, -23.38‰ and -25.14‰ when the pressure ratio of air to CO₂ gas were 0.007, 0.48 and 2.96. The δ^{13} C values of soil sample (T-1) were -24.70‰, -25.01‰ and -25.15% when the pressure ratio of air to CO₂ gas were 0.004, 0.17 and 0.5. The results both showed a trend that the higher concentration of impurity gas, the lower δ^{13} C value of sample. When the impurity gas and CO₂ pressure ratio is larger than 0.2, the deviations of δ^{13} C values of GBW04407 and T-1 were greater than 0.2‰. (2) When the ratio of impurity gas to CO₂ ranges from 0 to 0.008, the δ^{13} C values of GBW04407 obtained by the two freezing methods were very close, both within the error range; when the ratio of impurity gas to CO₂ was 0.5, the δ^{13} C value of GBW04407 obtained by the first freezing method (freezing CO₂ and H₂O by one step) was 0.9% negative than the standard value, while the result by the second method (freezing CO_2 and H_2O step by step) was 0.17% negative than the standard value; when the ratio of impurity gas to CO₂ was 3, the δ^{13} C value of GBW04407 obtained by the first freezing method was 2.71‰ negative than the standard value, while the result by the second method was only 0.47‰ negative than the standard value. (3) A surface soil sample SN-2 were weighed 5 mg, 10 mg, 15 mg, 20 mg and 40 mg, the ion current intensity of m/z 44 produced by these samples were 0.8 V, 1.5 V, 2.2 V, 2.8 V, and 5.2 V, respectively by using a small volume of sample collection tube. Those were significantly higher than values obtained by using a large volume of sample collection tube, which are 0.4 V, 0.9 V, 1.4 V, 2.0 V, and 4.2 V, respectively. Discussion In experiments, we noted that the higher the content of impurity gases in the vacuum line, the lower the ion current intensity and the δ^{13} C values of CO₂ gas. This suggests that the negative trend of δ^{13} C values of CO₂ with increasing content of impurity gases in vacuum line is not due to the δ^{13} C values of impurity gas (air) itself, but because the CO₂ gas is not completely frozen. The method of freezing CO₂ and H₂O step by step can decrease the fractionation of carbon isotope than freezing CO₂ and H₂O by one step. Probably because with larger surface area of trap B, more CO₂ can be frozen there by liquid nitrogen. Therefore, this method decreases the fractionation of carbon isotope due to incomplete CO₂ freezing. The ion current intensity of m/z 44 of samples increased 100% – 24%, 58% averagely by using small volume collection. This is because the CO₂ gas pressure is relatively high in small volume collection tube, so more CO_2 gas can balance into the mass spectrometer to enhance the ion current intensity of m/z 44 of sample, furthermore, enhancing ion current intensity of m/z 44 can improve the accuracy of isotope measurement. *Conclusions* (1) The purification and collection of CO_2 gas is an important step in the preparation of testing samples organic carbon stable isotope. The higher the concentrations of impurity gas in the sample, the greater the impact on the δ^{13} C of sample; (2) with same impurity gas background, freezing CO₂ and H₂O step by step can significantly reduce the influence of impurity gas on δ^{13} C of samples; (3) using collection tubes with small volume could significantly enhance the ion current intensity of CO₂, and therefore can improve the accuracy of δ^{13} C measurements for samples with low organic carbon contents. *Recommendations and perspectives* The results provide a significant improvement for reducing errors of δ^{13} C measurements with low organic carbon contents. It is recommended that appropriate freezing method and sample collection tube can improve the accuracy

and precision of δ^{13} C measurement.

Key words: organic carbon stable isotope; sample preparation; sealing tube method

有机碳稳定同位素在古环境、古植被、古气 候和土壤碳循环,以及有机质来源等诸多研究 领域已有广泛应用(林本海和刘荣谟, 1992; 段 毅和罗斌杰, 1998; 沈吉等, 1998; 刘卫国等, 2002; 张恩楼等, 2002; Liu et al, 2003; 饶志国等, 2005; 于贵瑞等, 2005; Liu et al, 2005; 罗光强等, 2009; 王国安等, 2012; 张成君等, 2012; 袁红朝等, 2014)。目前有机碳稳定同位素分析方法主要有4 种:(1)多次循环分析系统,(2)通用分析系统, (3) 封管法, (4) 连续流装置。封管法也称密 闭安瓶法,在国内,刘荣谟等(1990)首先建立 并改进了封管法,该方法可用于分析黄土,纤维 素等样品的有机碳稳定同位素。王楚等(1992) 介绍了使用设备简单,适合我国中小实验室使用 的一种封管法,能够用于分析制备湖泊沉积物及 各种物态的石油分馏物的有机碳稳定同位素样品。 封管法与其他几种有机碳稳定同位素分析方法相 比,操作稍复杂,但样品氧化充分,无记忆效应, 分析精度高,因而广泛应用于国内外稳定同位素 实验室。

高精度有机碳稳定同位素分析方法近年来受 到越来越多研究者的关注和重视。有机碳稳定同 位素分析过程主要包括样品前处理, CO, 气体的 制备以及质谱分析。随着高精度同位素质谱分析 仪器的不断完善, 仪器本身因素对样品测定结果 的影响越来越小。因此,近年来人们对如何提高 有机碳稳定同位素测定精度的研究多集中在样品 预处理方法和样品制备条件上,如王金权(2005) 对比研究了两种不同预处理方法对岩石样品有机 碳同位素的影响,曹蕴宁等(2005)研究了不同 酸处理条件去除碳酸盐,样品制备是否加铜丝以 及氧化条件等对土壤有机碳同位素组成的影响, 吴夏等(2008)研究了样品的粒度,不同酸浓度, 洗除样品残余酸和烘干温度等前处理条件对岩石 样品有机碳同位素组成的影响,迟云平等(2012) 研究了不同实验材料,不同仪器及不同温度对沉 积物有机碳同位素组成的影响,李阳阳等(2012) 对比研究了封管法和在线法对黄土有机碳同位素 分析的影响, 祝孟博等(2015) 研究了不同酸处 理方式,不同干燥方式等预处理方法对不同类型

样品有机碳同位素组成的影响。但对 CO₂ 气体制备,尤其是 CO₂ 气体纯化收集过程对样品有机碳稳定同位素组成影响的研究很少。

实验中笔者发现低有机碳含量样品稳定同位 素测定误差相对较大,这限制了有机碳稳定同位 素地球化学在环境研究中的应用。而 CO2 气体的 纯化收集是封管法制备有机碳稳定同位素样品的 一个重要步骤, 是影响样品 δ^{13} C 的可能因素之一。 因此,本文研究封管法制备有机碳稳定同位素样 品 CO, 气体收集时杂质气体对有机碳稳定同位素 组成的影响;对比研究一步冷冻分离 CO,和 H₂O 及分步冷冻分离 CO,和 H,O 的方法对样品有机碳 稳定同位素组成的影响;对比研究大体积收样管 和小体积收样管收集 CO, 对样品离子流强度的影 响。目的是找出低有机碳含量样品同位素测定误 差相对较大的可能原因, 探明封管法制备有机碳 稳定同位素样品 CO2 气体收集过程对稳定碳同位 素组成的影响及如何消除或减小该影响,从而进 一步提高封管法测试样品有机碳稳定同位素组成 的精度和准确性。

1 实验方法

1.1 有机碳稳定同位素分析样品制备

样品有机碳稳定同位素分析主要包括以下三 个步骤:样品前处理; CO₂气体的制备;质谱分析。 本文采用封管法进行有机碳稳定同位素样品制备, 具体实验步骤如图1所示。

为避免空白影响,实验所用器皿均先用稀酸 浸泡,然后用蒸馏水冲洗干净,在500℃加热4小时。

本研究选用的样品有国家标准物质 GBW04407 (炭黑)以及不同类型天然样品。天然样品包括洛 川表土 T-1,太白山表土 SN-2,洛川黄土 Luo-193, Luo-253,西峰黄土 XF01(1)1392 及青海岩石样品泥 岩,泥灰岩和长石砂岩。对于天然样品,及时置于 烘箱中以 40℃烘干,然后缩分、研磨,过100 目筛, 将过筛后的样品保存于干净铝箔袋中。取适量样品, 加盐酸去除其碳酸盐,将除净碳酸盐的样品冲洗至 中性,烘干后研磨,保存在预处理过的玻璃小瓶中。 将前处理好的样品装入石英样品管中,同时加入氧 化铜,铜丝和铂丝,抽真空至10⁻³ Pa,熔封石英样品管, 然后放入马弗炉内 850℃恒温至少 2.5 小时,以保证 有机质充分氧化。待样品管炉冷至室温后,取出, 置于 CO₂ 气体纯化装置上,用液氮和液氮 - 酒精冷 阱除去水分,收集纯净的 CO₂ 气体。对于有机碳稳 定同位素标准物质的制备,不需进行样品前处理, CO₂ 气体的制备过程与天然样品相同。

图 1 封管法制备有机碳稳定同位素样品流程图 Fig.1 Flow chart of organic carbon stable isotope analysis by using sealed tube method

本文的研究内容仅涉及流程图中"纯化并收 集生成的 CO₂ 气体"这一实验环节。

1.2 质谱分析

将收集到的 CO₂ 气体在 MAT-251 型质谱仪双 路进样系统上进行稳定碳同位素分析。

稳定碳同位素组成的表达式为:

 $δ^{13}C() = [(R_{\#_{\text{H}}} - R_{\#_{\text{R}}})/R_{\#_{\text{R}}}] \times 1000$ (1) 式中, $R_{\#_{\text{H}}}$ 为样品的稳定碳同位素比值($^{13}C/^{12}C$), $R_{\#_{\text{R}}}$ 为标准的稳定碳同位素比值($^{13}C/^{12}C$)。

稳定碳同位素组成相对 V-PDB 标准。所有样品的同位素分析均在中国科学院地球环境研究所同位素实验室进行,各类样品的测定精度用实验室工作标准控制,每批样品至少带1个工作标准,标准样品的重复分析误差 <0.2‰。

2 结果与讨论

2.1 杂质气体对收集 CO₂ 稳定碳同位素组成的影响

有机质碳氧化生成的 CO₂ 气体需经纯化收集 (去除 H₂O 和杂质气体)才能进行质谱测定。为

研究纯化收集过程杂质气体是否会对有机碳稳定 同位素结果产生影响,人为给真空管路中放入适 量空气,通过平衡扩散调节管路内空气的压力在 0.05-15.7 mbar。

选取有机碳稳定同位素国家标准物质 GBW04407(炭黑, δ^{13} C=(-22.43±0.07)‰)和 洛川表土样品 T-1,按1.1中方法对表土样品进行 前处理。测定了炭黑和 T-1表土样品纯化收集 CO₂ 时不同空气与 CO₂ 压力比值下的有机碳稳定同位 素组成,结果如图 2 所示。空气与 CO₂ 的压力比 值分别为 0.007, 0.48 以及 2.96 时,炭黑的 δ^{13} C 值分别为 -22.61‰, -23.38‰ 以及 -25.14‰。空 气与 CO₂ 的比值分别为 0.004, 0.17 以及 0.5 时, T-1表土的 δ^{13} C 值分别为 -24.70‰, -25.01‰ 以及 -25.15‰。炭黑和 T-1表土样品的有机碳稳定同位 素结果均表现出冷冻收集 CO₂ 气体时,杂质气体 含量越高,碳同位素组成越偏负的趋势。当杂质 气体与 CO₂ 的压力比值超过 0.2,炭黑和 T-1 有机 碳稳定同位素的偏差均大于 0.2‰。

图 2 杂质气体对收集 CO_2 气体稳定碳同位素组成的影响 Fig.2 Effect of air background on the $\delta^{13}C$ of CO_2 gas collection

文献中报道大气稳定碳同位素组成通常在-8‰ 左右 (Robinson and Scrimgeour, 1995; Kuzyakov, 2006), 比炭黑的稳定碳同位素组成-22.43‰明 显偏正,收集反应生成的CO2气体时,若混入 空气中的 CO₂,稳定碳同位素比值理论上应比 -22.43‰偏正。但目前大气中 CO, 的含量一般为 380 μmol·mol⁻¹,在本实验中,大气中 CO₂ 与样品 CO_2 的量相比不足以对其 $\delta^{13}C$ 值产生显著的影响。 在 T-1 样品的实验中笔者观察到相同样品用量条件 下杂质气体含量越高,冷冻收集的 CO2 气体的离 子流强度相对越低。这表明冷冻收集 CO, 气体时, 不是由于杂质气体 (空气)本身的碳同位素对样 品碳同位素组成产生影响,而是由于管路中杂质 气体,其中包括氮气等不能被液氮冷冻住的杂质 气体压力高干扰了 CO2 气体的冷冻收集, 使 CO2 气体没有被完全冷冻。冷冻收集 CO₂ 的过程产生 了同位素分馏,导致先收集到的CO,气体稳定碳 同位素组成偏负, 而剩余的未收集完全的 CO2 气 体稳定碳同位素组成偏正。

2.2 两种冷冻收集 CO₂ 气体方法对有机碳稳定同 位素组成的影响

张鸿斌(1986)指出燃烧生成的 CO₂ 和 H₂O 先用液氮冷冻在冷指中,然后换用-60℃冷冻剂冻 住 H₂O 分离出 CO₂。而多数文章中提到的冷冻方 法均是用不同冷冻剂一步分离冷冻 H₂O 和 CO₂(王 楚等,1992;沈吉和王楚,1997)。那么不同冷 冻收集 CO₂气体的方法是否会对其稳定碳同位素 组成产生影响?

封管法制备有机碳稳定同位素样品的冷冻收 集示意图如图3所示,A为收样管,B为冷阱,C 为样品管,装在可弯折的波纹管内。第一种是一

步冷冻分离 CO,和 H,O 的收集方法,也是目前收 集 CO, 气体的通常做法: 先将整个真空管路抽好 真空, 然后将冷阱 B 的温度用液氮 - 酒精冷冻剂调 至-60—-80℃,用于冷冻样品氧化生成的H₂O, 同时将收样管A浸在液氮中,准备收集CO,气体。 抽好波纹管腔内真空后折断其内石英样品管 C,样 品中的H₂O被冷冻在冷阱B内, 而CO2气体则经 过冷阱 B, 被液氮冷冻在收样管 A 内。冷冻 5 分 钟后,抽掉管路中不能被冷冻住的杂质气体,以 获得纯净的 CO, 气体供质谱测定。第二种是分步 冷冻分离 CO, 和 H,O 的收集方法: 抽好整个真空 管路的真空, 先将冷阱 B 的温度用液氮冷冻剂调 至-196℃,将石英样品管C折断,样品氧化生成 的 H₂O 和 CO₂ 同时被冷冻在冷阱 B 内。冷冻 5 分 钟后, 抽掉管路中不能被冷冻住的杂质气体, 然 后将收样管 A 浸在液氮中, 将冷阱 B 的液氮换成 液氮-酒精冷冻剂,这时H₂O仍被冷冻在冷阱B内, 而 CO, 气体被释放出来, 再被液氮冷冻收集在收 样管 A 内。

本研究选取炭黑标准,测定不同杂质气体比 例条件下,分别用两种冷冻收集方法收集的 CO₂ 的有机碳稳定同位素组成,结果如图 4 所示。杂 质气体与 CO₂ 的比值为0.008,用两种冷冻方法测 得的结果很接近,均在误差范围内;杂质气体与 CO₂ 的比值为 0.5,用第一种冷冻方法测得的结果 比标准值偏负 0.9‰,而用第二种方法测得的结果 偏负 0.17‰;杂质气体与 CO₂ 的比值为 3 时,用 第一种方法测得的结果比标准值偏负 2.71‰,而 用第二种方法测得的结果仅偏负 0.47‰。

从图中可以看出,杂质气体与 CO₂ 的比值低于 0.2 时,用两种冷冻方法收集得到的 CO₂ 气体稳

定碳同位素组成没有显著差异。随着杂质气体的 比例增高,两种冷冻方法获得的样品稳定碳同位 素组成均呈偏负趋势,但第一种方法的结果比第 二种方法的结果偏负的趋势更为显著,表明第二 种收集方法能显著减小 CO, 收集过程中产生的同 位素分馏。这可能是由于在相同的杂质气体背景 条件下, 第二种方法首先将 CO, 和 H,O 同时冷冻 在冷阱 B 内,冷阱 B 的体积和液氮直接接触的表 面积均比收样管A大,能够冷冻住更多的CO,气体, 减小了因收集不完全产生的同位素分馏。第二种 方法的第二步将 CO₂ 从冷阱 B 再冷冻至收样管 A 内的收集基本是完全的,因为收集5分钟后再次 抽管路真空时真空计的读数几乎没有变化。以上 结果表明第二种冷冻方法虽然也不能够完全收集 CO2气体,但在相同杂质气体背景条件下,与第一 种冷冻方法相比,显著减小了杂质气体对收集 CO, 的影响,提高了有机碳稳定同位素测定的准确度。

C: 放置安瓶的波纹管 Bellow including ampoule; 1, 2, 3, 4: 真空阀门 Vacuum valves; a, b, c, d: 金属活接头 Fittings

图 3 封管法有机碳稳定同位素分析 CO₂ 气体纯化收集装置示意图

两种冷冻收集方法获得的不同天然样品的有 机碳稳定同位素组成结果如表1所示。从结果中 可以看出,两个装样量最多的样品(2)泥岩和 Luo-193,也是有机碳含量相对较低的样品,用两 种冷冻收集方法获得的有机碳同位素的差值最大, 用第一种冷冻方法比第二种冷冻方法获得的碳同 位素组成分别偏负 0.52‰ 和 0.56‰。同时在样品 收集过程中也注意到(2)泥岩样品在冷冻收集 CO₂气体后,抽杂气时真空度下降最多,说明样品 氧化生成的气体中杂质气体相对较多。

因此,对于有机碳含量低,氧化产物中除 CO₂ 和 H₂O 外,杂质气体含量高的天然样品,在纯化 收集 CO₂ 气体时设法消除或减小收集过程中可能 产生的碳同位素分馏,是减小样品有机碳稳定同 位素测定误差的一个有效措施。

2.3 改进的小体积收样管

质谱测定要求被分析气体的离子流强度在一定的范围内,强度过高会超出检测限,过低会降低质谱的测定精度。因此样品生成 CO₂ 气体的离子流强度应在合适的范围内才能保证有机碳稳定同位素的测定精度和准确度。

传统使用的 CO₂ 气体收样管是油脂活塞收样 管,活塞部分依靠真空脂密封。收样管内部体积为 28±2 mL。对于植物样品或有机质含量相对较高的 土壤和沉积物样品,一般样品用量从 2—500 mg, 用该收样管收集的 CO₂ 气体的离子流强度一般可 达到1V以上,能满足质谱仪准确测定的下限需要。 但对于有机碳含量很低的样品,特别是老地层或 岩石样品等,样品制备受样品量和石英反应管体 积等的限制,样品氧化生成的 CO₂ 气体离子流强 度非常低,仅零点几伏或更低,质谱测定的偏差 会明显增大。

为提高此类样品测定的精确度,本研究从提

高样品的离子流强度着手,将大体积油脂收样管 改进为小体积无油脂收样管。改进的小体积收样 管内部体积为1.4±0.1 mL,仅为传统收样管体积 的4%—6%。而且小体积收样管依靠优质橡胶圈 密封,不使用真空脂,可避免真空油脂对系统的 可能污染。

样品编号 Sample number	一次冷冻方法 Freezing method 1 δ ¹³ C/(‰, VPDB)	二次冷冻方法 Freezing method 2 δ^{13} C/(‰, VPDB)	差值 Difference δ ¹³ C/(‰, VPDB)	样品量 Sample weight/mg	<i>m/z</i> 44 离子流强度 Ion current intensity of <i>m/z</i> 44/V
T-1	-24.61	-24.46	-0.15	107	6.0
(2)泥岩 (2) Mudstone	-21.76	-21.24	-0.52	650	2.9
泥灰岩(青海) Marlite (Qinghai)	-18.07	-17.86	-0.21	170	3.5
(11) 长石砂岩 (11) Arcose	-21.56	-21.38	-0.18	590	3.8
XF01(1)1392	-21.48	-21.32	-0.16	300	1.2
Luo-193	-22.55	-21.99	-0.56	650	1.6
Luo-253	-20.77	-20.85	0.08	560	1.4

表 1 两种冷冻方法收集 CO_2 对不同天然样品有机碳稳定同位素组成的影响 Tab.1 The effects of two freezing methods on the $\delta^{13}C$ values of natural samples

为测试小体积收样管对提高样品离子流强度 的效果,本研究选用太白山土壤样品,准确称量 样品量,比较了传统油脂收样管与小体积无油脂 收样管在相同样品用量条件下收集到的土壤样品 SN-2产生的CO2气体的离子流强度,结果如图 5 所示。从图中可以看出, SN-2 的样品量分别为 5 mg、10 mg、15 mg、20 mg 以及 40 mg, 用小体 积收样管收集的 CO2 气体的 m/z 44 离子流强度分 别为 0.8 V、1.5 V、2.2 V、2.8 V 以及 5.2 V、均显 著高于用大体积收样管收集的 CO2 气体的 m/z 44 离子流强度: 0.4 V、0.9 V、1.4 V、2.0 V及4.2 V。 离子流强度提高的幅度为24%-100%,平均提高 58%。从结果中还可以看出, CO2气体的 m/z 44 离子流强度相对越低,用小体积收样管收集的 CO, 气体的离子流强度提高的幅度相对越大,这将显著 提高相同样品量条件下低有机碳含量样品的 m/z 44 离子流强度。

用改进的小体积收样管收集的 CO₂ 气体的 *m*/*z* 44 离子流强度显著高于大体积收样管收集到 的 CO₂ 气体的离子流强度。这是由于在质谱仪上 使用双路进样系统测试时,进样系统管路的体积 是一定的,小体积收样管内 CO₂ 气体的压力相对 较高,能够使收样管内的 CO₂ 气体更多地平衡到 质谱仪的进样系统管路中,提高质谱仪管路中 CO₂ 气体的压力,从而提高样品 m/z 44 的离子流强度, 进而可提高低含量样品的测定精度。

3 结论

通过对封管法制备有机碳稳定同位素样品 CO₂ 气体收集过程的研究,得到以下结论:

(1) CO₂ 气体纯化收集是封管法制备有机 碳稳定同位素样品过程中一个重要的步骤。杂质 气体干扰是 CO₂ 气体收集过程中一个重要影响因 素,杂质气体与 CO₂ 气体的压力比值超过 0.2,对 GBW04407(炭黑)稳定碳同位素组成有显著影响, 且杂质气体含量越高,对稳定碳同位素组成的影 响越大。

(2)一步冷冻分离 CO₂和 H₂O 及分步冷冻 分离 CO₂和 H₂O 这两种冷冻方法在杂质气体含量 较低时对炭黑的有机碳稳定同位素组成没有显著 影响;而当杂质气体与 CO₂的压力比值大于 0.2 时,一步冷冻分离 CO₂和 H₂O 收集的 CO₂稳定 碳同位素组成明显偏负,而分步冷冻 CO₂和 H₂O 的方法能够显著减小 CO₂ 收集过程中产生的同位 素分馏。

(3)利用改进的小体积收样管能有效提高样品 CO₂的离子流强度,尤其是当 CO₂气体的 *m/z* 44 离子流强度低于 1 V 时,小体积收样管能够提高 CO₂气体的离子流强度 60% 以上,这将显著提高 相同样品量条件下低有机碳含量样品的 *m/z* 44 离子流强度,进而能够提高样品的质谱测定精度。

参考文献

- 曹蕴宁, 刘卫国, 宁有丰, 等. 2005. 土壤有机碳同位素样品 制备过程的影响因素讨论 [J]. *地球化学*, 34(4): 395–404. [Cao Y N, Liu W G, Ning Y F, et al. 2005. Effects of soil sample preparation process on δ¹³C of organic matter [J]. *Geochimica*, 34(4): 395–404.]
- 迟云平,张 洒,吴 松,等. 2012. 不同实验条件对早新 生代沉积物有机碳同位素的影响 [J]. *地球学报*, 33(6): 967-976. [Chi Y P, Zhang S, Wu S, et al. 2012. The influences of different experimental conditions on organic carbon isotopes of early Cenozoic sediments [J]. *Acta Geoscientica Sinica*, 33(6): 967-976.]
- 段 毅, 罗斌杰. 1998. 深海现代沉积有机质碳同位素组成 变化的古气候证据 [J]. *海洋地质与第四纪地质*, 18(4): 53-58. [Duan Y, Luo B J. 1998. Palaeoclimate evidence for carbon isotopic changes of organic matters in modern deep-sea sediments [J]. *Marine Geology & Quaternary Geology*, 18(4): 53-58.]
- 李阳阳, 王 琴, 崔琳琳, 等. 2012. 不同分析方法对 黄土有机碳同位素分析的影响 [J]. *地球环境学报*, 3(4): 936–941. [Li Y Y, Wang Q, Cui L L, et al. 2012. Differences in δ¹³C values of bulk organic matter from Chinese loess obtained using two analytic methods [J]. *Journal of Earth Environment*, 3(4): 936–941.]

林本海, 刘荣谟. 1992. 最近 800 ka 黄土高原夏季风变迁

的稳定同位素证据 [J]. *科学通报*, 37(18): 1691-1693. [Lin B H, Liu R M. 1992. Stable isotopic evidence of the summer monsoon evolution during the last 800 ka in Chinese Loess Plateau [J]. *Chinese Science Bulletin*, 37(18): 1691-1693.]

- 刘荣谟, 刘 禹, 孙福庆. 1990. 安瓶法制备有机碳 δ¹³C 同位 素样品方法 [M]// 佚名. 环境地球化学与健康. 贵阳: 贵 州科技出版社: 123–125. [Liu R M, Liu Y, Sun F Q. 1990. Method for preparation organic δ¹³C samples by sealing tube method [M]// Anon. Environmental Geochemistry and Health. Guiyang: Guizhou Science and Technology Publishing House: 123–125.]
- 刘卫国, 宁有丰, 安芷生, 等. 2002. 黄土高原现代土壤 和古土壤有机碳同位素对植被的响应 [J]. *中国科学* (*D* 辑), 32(10): 830-836. [Liu W G, Ning Y F, An Z S, et al. 2002. Modern soil and paleosol organic carbon isotope response to vegetation of Chinese Loess Plateau [J]. *Science in China (Series D)*, 32(10): 830-836.]
- 罗光强, 耿元波, 袁国富. 2009. 碳同位素在草地生态 系统碳循环中的应用与展望 [J]. *地理科学进展*, 28(3): 441-448. [Luo G Q, Geng Y B, Yuan G F. 2009. Application and prospect of carbon isotope in the study of carbon cycle in grassland ecosystem [J]. *Progress in Geography*, 28(3): 441-448.]
- 饶志国,陈发虎,曹 洁,等.2005.黄土高原西部地区末次冰期和全新世有机碳同位素变化与 C₃/C₄ 植被类型转换研究 [J]. *第四纪研究*, 25(1): 107–114. [Rao Z G, Chen F H, Cao J, et al. 2005. Variation of soil organic carbon isotope and C₃/C₄ vegetation type transition in the western Loess Plateau during the last glacial and Holocene periods [J]. *Quaternary Sciences*, 25(1): 107–114.]
- 沈 吉,王 楚.1997. 静态灼烧氧化法制备有机碳同 位素质谱分析样品 [J]. 分析测试技术与仪器, 3(2): 113-116. [Shen J, Wang C. 1997. Preparation of organic carbon isotopic sample formass spectrometric analysis by static combustion [J]. Analysis and Testing Technology and Instruments, 3(2): 113-116.]
- 沈 吉,吴瑞金,安芷生.1998.大布苏湖沉积剖面有机碳
 同位素特征与古环境 [J]. 湖泊科学,10(3):8-12. [Shen J, Wu R J, An Z S. 1998. Characters of the organic δ¹³C and paleoenvironment in the section of Dabusu Lake [J]. Journal of Lake Sciences, 10(3): 8-12.]
- 王 楚,沈 吉,王苏民.1992.封管法制备有机碳同位素 质谱分析样 [J]. *湖泊科学*,4(4):81-85. [Wang C, Shen

J, Wang S M. 1992. A method of sealing tube to prepare samples for mass spectrometric analysis of organic carbon isotopes [J]. *Journal of Lake Sciences*, 4(4): 81–85.]

- 王国安,张雷雷,柳晓娟. 2012. 利用土壤有机质的碳同 位素变化探讨环境因子和生物学因子对土壤有机碳 周转的影响 [J]. *地球环境学报*, 3(4): 960-968. [Wang G A, Zhang L L, Liu X J. 2012. Assess the effects of environmental and biotic factors on the turnover of soil organic carbon through vertical variations in carbon isotope of soil organic matter [J]. *Journal of Earth Environment*, 3(4): 960-968.]
- 王金权. 2005. 样品预处理对有机碳同位素分析结果的 影响 [J]. 古生物学报, 44(3): 472-477. [Wang J Q.
 2005. Sample-pretreatment effects on analytical results of organic C-isotopes [J]. Acta Palaeontologica Sinica, 44(3): 472-477.]
- 吴 夏,黄俊华,白 晓,等. 2008. 沉积岩总有机质 碳同位素分析的前处理影响 [J]. 地球学报, 29(6): 677-683. [Wu X, Huang J H, Bai X, et al. 2008. Sample-pretreatment effects on analytical results of total organic carbon isotopes in sedimentary rocks [J]. Acta Geoscientica Sinica, 29(6): 677-683.]
- 于贵瑞,王绍强,陈泮勤,等.2005.碳同位素技术在土壤碳 循环研究中的应用 [J]. *地球科学进展*,20(5):568-577. [Yu G R, Wang S Q, Chen P Q, et al. 2005. Isotope tracer approaches in soil organic carbon cycle research [J]. *Advances in Earth Science*, 20(5):568-577.]
- 袁红朝,李春勇,简 燕,等. 2014. 稳定同位素分析技术在 农田生态系统土壤碳循环中的应用 [J]. *同位素*, 27(3): 170–178. [Yuan H C, Li C Y, Jian Y, et al. 2014. Stable isotope technique in the soil carbon cycling research of agricultural ecosystems [J]. *Journal of Isotopes*, 27(3): 170–178.]
- 张成君,张宛漪,樊 荣,等.2012. 湖泊环境早期成岩作用 对沉积物中有机质 C/N 和碳同位素组成的影响 [J]. 地 球环境学报,3(4):1005–1012. [Zhang C J, Zhang W Y, Fan

R, et al. 2012. Early diagenesis impacting C/N and organic isotopic compositions in the lacustrince sediments [J]. *Journal of Earth Environment*, 3(4): 1005–1012.]

- 张恩楼,沈 吉,夏威岚,等.2002. 青海湖沉积物有机碳 及其同位素的气候环境信息 [J]. 海洋地质与第四纪地 质,22(2): 105-108. [Zhang E L, Shen J, Xia W L, et al. 2002. Environmental records from organic carbon and its isotope of Qinghai Lake sediment [J]. Marine Geology & Quaternary Geology, 22(2): 105-108.]
- 张鸿斌. 1986. 有机碳、氢同位素质谱分析样静态制备 技术 [J]. *地球化学*, 2: 108–112. [Zhang H B. 1986. A technique for static preparation of samples for mass spectrometric analysis of organic carbon and hydrocarbon isotopes [J]. *Geochimica*, 2: 108–112.]
- 祝孟博, 宋建中, 彭平安. 2015. 预处理过程对不同类型样 品中有机碳含量和稳定碳同位素测定的影响 [J]. *地 球与环境*, 43(4): 476–482. [Zhu M B, Song J Z, Peng P A. 2015. Influences of pretreatment procedures on determination of total organic carbon and stable carbon isotope in different samples [J]. *Earth and Environment*, 43(4): 476–482.]
- Kuzyakov Y. 2006. Sources of CO₂ efflux from soil and review of partitioning methods [J]. Soil Biology & Biochemistry, 38: 425–448.
- Liu W G, An Z S, Zhou W J, et al. 2003. Carbon isotope and C/N ratios of suspended matter in rivers: An indicator of seasonal change in C₄/C₃ vegetation [J]. *Applied Geochemistry*, 18(8): 1241–1249.
- Liu W G, Yang H, Cao Y N, et al. 2005. Did an extensive forest ever develop on the Chinese Loess Plateau during the past 130 ka?: A test using soil carbon isotopic signatures [J]. *Applied Geochemistry*, 20 (3): 519–527.
- Robinson D, Scrimgeour C M. 1995. The contribution of plant C to soil CO₂ measured using δ^{13} C [J]. Soil Biology & Biochemistry, 27(12): 1653–1656.