

# 关中盆地 NO<sub>2</sub> 和 SO<sub>2</sub> 对颗粒物污染的协同效应

左 敏<sup>1,2,3</sup>,李国辉<sup>1,2</sup>,吴佳睿<sup>1,2\*</sup>

中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061
中国科学院气溶胶化学与物理重点实验室,西安 710061
中国科学院大学,北京 100049

摘 要:基于 WRF-Chem 模式模拟了关中盆地 2019 年 1 月 2—14 日一次颗粒物污染事件,评估了 NO<sub>x</sub>和 SO<sub>2</sub> 减排及其在颗粒物污染中的协同作用对 PM<sub>2.5</sub> 污染的影响。敏感性实验结果表明:NO<sub>x</sub> 减排 可使 PM<sub>2.5</sub> 中硝酸盐含量下降,但大气中 O<sub>3</sub> 浓度上升,大气氧化能力增强,其他二次组分上升,导致 PM<sub>2.5</sub> 下降不明显;SO<sub>2</sub> 人为源减排可使硫酸盐质量浓度下降,但由于硫酸盐在 PM<sub>2.5</sub> 中占比较低,当 SO<sub>2</sub> 减排 75% 时,PM<sub>2.5</sub> 仅下降 1.74%;当减排比例较高时,NO<sub>x</sub>和 SO<sub>2</sub> 同时减排更有利于颗粒物污染 防治。 PM<sub>2.5</sub> 质量浓度在 NO<sub>x</sub>和 SO<sub>2</sub> 同时减排 75% 时比分开减排 75% 时多下降 0.75%,主要是硫酸盐 下降所致;对气溶胶含水量进行分析,发现 NO<sub>x</sub> 对气溶胶含水量进行分析,发现 NO<sub>x</sub> 和气容胶含水量影响较大,当 NO<sub>x</sub> 减排 75% 时,气溶 胶含水量可下降 15.51%;此外,NO<sub>x</sub>和 SO<sub>2</sub> 同时减排比分开减排时气溶胶含水量更低,更不利于二次 颗粒物生成。

关键词:WRF-Chem; PM2.5; NOx; SO2; 协同效应; 气溶胶含水量

# Synergetic effects of NO<sub>2</sub> and SO<sub>2</sub> on air particulate matter pollution in the Guanzhong Basin (GZB), China

ZUO Min<sup>1, 2, 3</sup>, LI Guohui<sup>1, 2</sup>, WU Jiarui<sup>1, 2\*</sup>

1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

2. Key Laboratory of Aerosol Chemistry and Physics, Chinese Academy of Sciences, Xi'an 710061, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: *Background, aim, and scope* Since the implementation of the Air Pollution Prevention and Control Action Plan in 2013, particulate matter pollution has been significantly alleviated in the Guanzhong Basin (GZB). Still, heavy haze occurs frequently in winter. According to observational data of air pollutants in the winters between 2013 and 2018, the mass concentrations of CO, NO<sub>2</sub>, PM<sub>2.5</sub>, and especially SO<sub>2</sub>, have decreased significantly in the GZB. However, the concentration of O<sub>3</sub> showed an overall upward trend. Increased atmospheric oxidation capacity due to elevated O<sub>3</sub> concentration can promote the generation of secondary aerosols. According to statistical analyses of organic carbon (OC) and elemental carbon (EC), which are important

收稿日期:2021-10-19;录用日期:2022-01-05;网络出版:2022-01-25

Received Date: 2021-10-19; Accepted Date: 2022-01-05; Online first: 2022-01-25

基金项目:科技部项目(Y7YF051437)

Foundation Item: Ministry of Science and Technology of the People's Republic of China (Y7YF051437)

通信作者:吴佳睿, E-mail: wujr@ieecas.cn

Corresponding Author: WU Jiarui, E-mail: wujr@ieecas.cn

**引用格式**: 左 敏, 李国辉, 吴佳睿. 2022. 关中盆地 NO<sub>2</sub>和 SO<sub>2</sub> 对颗粒物污染的协同效应 [J]. 地球环境学报, 13(5): 571–587.

Citation: Zuo M, Li G H, Wu J R. 2022. Synergetic effects of NO<sub>2</sub> and SO<sub>2</sub> on air particulate matter pollution in the Guanzhong Basin (GZB), China [J]. *Journal of Earth Environment*, 13(5): 571–587.

components of  $PM_{25}$ , secondary aerosols played an important role in the winter. The main purpose of the study is to quantitatively evaluate reductions in NO, and SO<sub>2</sub> emission and synergistic effects of these reductions on PM<sub>25</sub>. Materials and methods A large-scale heavy haze event in the GZB from 2 to 14 January 2019 was simulated with the WRF-Chem model. Multiple sensitivity experiments were conducted to reproduce actual emission reduction scenarios of NO<sub>2</sub> and SO<sub>2</sub>, i.e., 25%, 50%, and 75% reductions, simulated separately and simultaneously in the model. **Results** With NO<sub>x</sub> and SO<sub>2</sub> reduction rates of 25%, 50%, and 75% in the study period, the PM<sub>2.5</sub> mass concentrations at simultaneous emission reductions increased 0.10% at 25% reduction, however, at 50% and 75% reduction it went down 0.20% and 0.75% more than the sum of single emission reduction effects, respectively. **Discussion** Declining NO<sub>x</sub> from anthropogenic emissions can decrease nitrate concentration but also increase atmospheric O<sub>3</sub> concentration. Enhancing the atmospheric oxidation capacity promotes the generation of other secondary components. Therefore, the decreases in PM<sub>2.5</sub> were low. When NO<sub>x</sub> was reduced by 75%, PM<sub>2.5</sub> was only reduced by 4.60%. Reductions of anthropogenic SO<sub>2</sub> emissions can reduce the mass concentration of sulfate. However, the proportion of sulfate in PM<sub>2.5</sub> was relatively low (8.62%). Therefore, its effect on overall  $PM_{2.5}$  reduction was not apparent. When SO<sub>2</sub> was reduced by 75%,  $PM_{2.5}$  only decreased by 1.74%. For simultaneous reductions of NO<sub>x</sub> and SO<sub>2</sub> emissions, the decline in PM<sub>2.5</sub> mass concentrations was higher than the sum of separate 50% and 75% emission reductions of  $NO_x$  and  $SO_2$ , which was mainly caused by the reduction of sulfate, indicating that simultaneous emission reduction is conducive to preventing and controlling particulate pollution. The reduction of NO<sub>y</sub> greatly influenced the aerosol water content (AWC). When NO<sub>y</sub> was reduced by 75%, the AWC could be reduced by 15.51%. The AWC of simultaneous emission reductions was lower than those of separate emission reductions, which is more unfavorable to generating secondary particles. *Conclusions* Simultaneous reductions of  $NO_x$  and  $SO_2$  emissions were more beneficial to preventing and controlling particulate pollution than separate emission reductions at a higher reduction rate, which was mainly caused by the reduction of AWC. Recommendations and perspectives In future research, it is necessary to update emission inventories and optimize the WRF-Chem model to reduce simulation bias. In addition, future studies should investigate whether this phenomenon applies to different air pollution characteristics in different regions and seasons.

Key words: WRF-Chem;  $PM_{2.5}$ ;  $NO_x$ ;  $SO_2$ ; synergistic effect; aerosol water content

改革开放以来,工业化和城市化的快速发展 极大地提高了生产力和人民生活水平,但也带来 了严重的空气污染,威胁着人们的健康(Shen et al, 2017)。关中盆地城市群工业生产和人口 相对集中,大气污染问题十分突出,其中以颗粒 物污染最为明显(Wang et al, 2014)。自2013 年《大气污染防治行动计划》(Air Pollution Prevention and Control Action Plan, APPCAP) 实施以来,关中盆地的空气质量已有明显改善 (Zheng et al, 2018),但冬季气溶胶污染过程仍 然频繁发生。PM<sub>25</sub>粒径小活性强,更容易吸附有 毒有害物质进入人体,对人体健康造成不利影响, 因而受到公众关注(Lin et al, 2021)。

PM2.5 组分可分为一次组分和二次组分。一次

组分是指从排放源直接排放到大气环境中的液态 或固态颗粒物,主要由火山喷发、沙尘暴、森林 火灾、海洋飞沫等自然产生以及燃煤、机动车、日 常生活等人为排放。二次组分是由大气中的气态污 染物经过化学或物理过程转化而成,主要包括二 次无机气溶胶(SNA,硫酸盐(sulfate)、硝酸盐 (nitrate)和铵盐(ammonium)的统称)和二次 有机气溶胶(secondary organic aerosol, SOA)。 硝酸盐作为  $PM_{2.5}$ 重要组分,其生成主要受  $NO_x$ (NO和  $NO_2$ 的混合物)的气相氧化驱动。白天,  $NO_3$ 主要由  $NO_2$ 与光化学产生的·OH 的均相反应 生成(Sarwar et al, 2013)。在夜间,NO和  $NO_2$ 被  $O_3$ 氧化,形成硝酸盐自由基( $NO_3$ )和五氧化 二氮( $N_2O_5$ )。在气溶胶中,  $N_2O_5$ 和  $NO_3$ 的水解 反应在NO。的形成过程中起到重要作用(Pathak et al, 2011)。NO,可以由自然活动或非化石燃料 燃烧排放,如闪电、土壤中的微生物过程和生物 质燃烧,也可以由工业、运输和发电厂的燃料燃 烧等产生。迄今为止,全球人为排放的 NO,远远 超过自然来源(Krotkov et al, 2016)。因此,人 为产生的 NO. 的减排被认为是解决大气污染的一 项重要措施。在O<sub>3</sub>光化学生成过程中,HO<sub>x</sub>循环 中各种自由基相互转化,氧化 VOCs 并抑制 O3 与 NO 的反应(Seinfield, 1988)。然而, 在关中地 区,由于冬季光化学反应较弱,相对缺乏 HO,自 由基, O<sub>3</sub> 与 NO 反应增强。人为源(燃料燃烧) 排放的 NO<sub>x</sub> 中主要为 NO,约占 90% 以上,空气 中的 NO, 除少部分来自于污染源的直接排放, 大 多数由 NO 与 O<sub>3</sub> 反应产生。当人为排放 NO<sub>4</sub> 降 低, NO 与 O<sub>3</sub> 的反应减弱, 减少 O<sub>3</sub> 消耗, 会使 大气中 O<sub>3</sub> 浓度上升 (Seinfeld and Pandis, 2006; Levy et al, 2014; Le et al, 2020)。O,反应活性 很高,是对流层重要的光化学氧化剂,大气中O, 浓度上升,意味着大气氧化能力的提升,可以促使  $SO_2$ 、 $NO_r$ 、 $VOCs 形成 SO_4^{2-}$ 、 $NO_3$ 和 SOA (Feng et al, 2019)。O, 还可以通过影响·OH、H<sub>2</sub>O<sub>2</sub>、 RCHO 等氧化剂的浓度来影响 PM,5 中二次组分的 生成(Saathoff et al, 2009)。NO<sub>x</sub>作为PM<sub>25</sub>的 前体物,其减排能有效降低大气中PM25浓度, 但同时冬季 NO,减排导致 O,浓度的上升对 PM,5 污染治理效果也存在削弱作用。硫酸盐作为大气 颗粒物的重要组成部分,其在大气中相对含量对 若干环境问题具有重要影响,包括酸雨、人类和 生态系统健康以及地球能量平衡的改变 (Sarwar et al, 2013)。硫酸盐来源可分为一次排放和二次 生成,一次排放主要为工业排放,如硫酸生产、 硫酸矿的制造和使用等,一次排放产生的硫酸盐 只占大气气溶胶中硫酸盐的很少一部分,大气中硫 酸盐主要来自 SO, 的氧化。SO, 在大气中氧化的途 径和方式是多种多样的,反应机制主要分为三类, 即气相均相氧化,在云、雾水中或气溶胶液滴表 面的非均相氧化, SO, 和氧化剂进入液相发生液相 氧化反应,但具体的化学机理仍存在争议(Zhang et al, 2015)。已知的 SO<sub>2</sub> 的气相氧化包括与 ·OH和稳定的 Criegee 中间体的反应。SO, 的液相 氧化途径可能发生得更快,包括通过催化或非催 化途径与溶解的O<sub>3</sub>、H<sub>2</sub>O<sub>2</sub>、有机过氧化物、·OH和 NO<sub>2</sub>反应(Clifton et al, 1988)。铵盐作为大气中

重要的细颗粒物组分之一,主要由大气中的 NH<sub>3</sub> 与酸性气体 HNO<sub>3</sub>和 H<sub>2</sub>SO<sub>4</sub>等进行气相反应, 然后通过气态向颗粒态转化而成,也可以在中和 NO<sub>3</sub>、SO<sub>4</sub><sup>2-</sup>的气溶胶成核过程中生成(Wang et al, 2012; Griffith et al, 2015)。因此,大气中 铵盐含量也会随 NO<sub>x</sub>和 SO<sub>2</sub>浓度变化而波动。

非均相反应在对流层气态污染物的转化与二 次气溶胶的形成中起重要作用,非均相反应可以改 变颗粒物的表面特性和化学组成,如颗粒物的毒 性、吸湿性和光学性质。SNA 的生成途径均包含 重要的非均相生成过程。气溶胶水作为非均相反 应的介质,在二次气溶胶生成过程中有重要作用 (Pilinis et al, 1989)。 气溶胶含水量(AWC) 对 SNA 的生成有促进作用, 而 AWC 又与大气的 相对湿度有关(Shen et al, 2019)。在相对湿度 较高的天气条件下,大气非均相反应加快,反应生 成物进而吸水和潮解,可以明显促进气溶胶污染 物的形成。因此,AWC 和相对湿度对  $SO_{1}^{2-}$ 和  $NO_{2}^{-}$ 在颗粒物表面的多相化学转化具有显著的促进作 用(Hung and Hoffmann, 2015)。大气中的 SO<sub>2</sub> 和 NO,等在大气颗粒物表面通过非均相反应转化 生成硫酸盐和硝酸盐等二次气溶胶,增加了颗粒 物的粒径和质量浓度,颗粒物的化学组成会发生 变化,颗粒物吸湿性增强,使得颗粒物更容易吸 水,从而显著增大其粒径与表面积,颗粒物的消光 能力增强。气溶胶含水量的增加可进一步促进 SO2 和 NO<sub>2</sub>等在颗粒物表面的非均相反应,促进颗粒 物吸湿增大,以上这些过程形成正反馈机制,可 不断促进气态污染物向二次气溶胶的转化。由于 硝酸盐的水溶性比矿物质气溶胶高几个数量级, NO,在矿物颗粒物表面反应生成的硝酸盐可以显著 增强颗粒物的吸湿性(Sullivan et al, 2009),因 此,在硝酸盐和硫酸盐的非均相形成过程中,NO<sub>2</sub> 和 SO,氧化反应生成 NO,和 SO,<sup>2</sup>导致的颗粒物吸 湿性的增强可进一步促进 NO<sub>2</sub>和 SO<sub>2</sub>的转化,即 NO2和SO2在颗粒物硝酸盐和硫酸盐生成过程中 具有协同促进作用。反之,当NO2和SO2同时减 排时,更不利于 PM25 中二次组分的生成,即 NOr 和 SO2减排对 PM25减排的协同效应。

国内外学者对 NO<sub>x</sub> 和 SO<sub>2</sub> 的减排对颗粒物 污染的影响以及 NO<sub>x</sub> 和 SO<sub>2</sub> 在颗粒物污染中的 非均相反应机制做了诸多研究。例如:韩力慧等 (2014)利用 DRIFTS 结合离子色谱法研究了 NO<sub>2</sub> 在 MgO 颗粒表面的非均相反应,通过敏感性

实验分析了相对湿度对该反应的影响程度,发现当 有过量水汽存在时,颗粒物表面吸附水增多,吸附 水覆盖了颗粒物表面的反应活性位点, 使颗粒物表 面摄取 NO,速率减慢,不利于硝酸盐生成,但可 使反应持续时间增长。Li et al (2019)发现适度的 湿度能促进 SO,氧化生成硫酸盐,颗粒物表面吸 附水可以促进羟基的生成,进而促进 SO,的氧化, 但过高的湿度会在颗粒物表面形成水膜,阻碍颗粒 物表面反应活性位点与大气中 SO<sub>2</sub> 接触,抑制硫 酸盐的生成。He et al (2014)发现 NO<sub>2</sub>和 SO<sub>2</sub>在 矿物粉尘表面发生非均相反应时具有协同作用。与  $NO_x$ 共存会降低  $SO_2$  的环境容量, 使  $SO_2$  快速转 化为硫酸盐。在 SO2氧化过程中, O2是关键的氧 化剂, 而 NO<sub>x</sub> 和矿物氧化物作为催化剂, 促进 SO<sub>2</sub> 在矿物氧化物表面转化为硫酸盐。另一方面,形成 的表面硝酸盐可以促进矿物氧化物的吸湿性和气溶 胶含水量(Ma et al, 2010),提高了 SO,转化为 硫酸盐的效率(Sievering et al, 1992)。

真实大气颗粒物在形成过程中表面非均相反 应非常复杂,已有关于 NO,和 SO,对颗粒物污染 的复合效应的研究主要集中在以单矿物组分或几 种组分为载体,而真实大气颗粒物组分往往更复 杂,表面化学过程也更复杂,只有结合实际大气 环境去评估 NO。和 SO。在颗粒物污染中的协同效 应才更具有实际意义。WRF-Chem 的气象过程和 化学过程使用相同的水平和垂直坐标系、相同的物 理参数化方案,不存在时间上的插值,并且能够 考虑化学过程对气象过程的反馈,因此对真实大 气环境具有良好的模拟效果。Feng et al (2020) 通过 WRF-Chem 合理再现关中盆地 2016 年冬季 一次气溶胶污染天气过程,评估了冬季 O<sub>3</sub> 浓度升 高导致大气氧化能力的增强对 PM,5浓度及二次组 分的影响。Liu et al (2020)利用 WRF-Chem 模 拟了华北平原大气污染物和无机气溶胶的变化趋 势,模拟结果与观测数据吻合度较高,以此为基 础对 N<sub>2</sub>O<sub>5</sub> 非均相水解过程对硝酸盐生成的贡献进 行了评估。本文利用 WRF-Chem 模式通过对真实 大气环境的模拟评估量化 NO<sub>2</sub>-颗粒物 -SO<sub>2</sub>体系 中NO2和SO2生成硝酸盐和硫酸盐的协同效应。

# 1 模式和方法

# 1.1 模式设置与资料说明

WRF-Chem 模式是美国大气研究中心(NCAR)

模式在线完全耦合开发的新一代区域空气质量模 式(Grell et al, 2005),李国辉等人对其进行了 修改 (Li et al, 2010; Li et al, 2011a; Li et al, 2011b; Li et al, 2012), 以适应中国空气污染 的模拟研究,对模式的具体改进方法在贝耐芳等 (2017)一文中已进行了详细介绍。本研究使 用 WRF-Chem 模式模拟了关中地区 2019 年 1 月 2-14日一次严重的气溶胶污染事件。图1显 示了模式模拟区域。模拟区域中心为 34°15′N、 109°E,水平分辨率为6km×6km,网格数为150× 150, 垂直分层为35层。详细的模式设置如表1 所示。模式采用 SAPRC-99 化学机制模拟气相化 学反应, 气溶胶模拟 (Binkowski and Roselle, 2003)采用美国环保局开发的 CMAO 气溶胶模块 (AERO5)。采用 ISORROPIA 1.7 版本 (Nenes et al, 1998)模拟无机气溶胶,计算了硫酸铵-硝 酸铵-水无机气溶胶与气相前体物热力学平衡时的 组成和相态。在模式中加入非传统的 SOA 模块来 模拟 SOA 的形成(Donahue et al, 2006; Robinson et al, 2007),这些模块使用 VBS 方法进行计算。 WRF-Chem 模式中采用的非传统 SOA 模块包括 4 种 SOA 形成途径:以半挥发性和共排放的 IVOCs 处理的 POA 的氧化和分配、人为 VOCs、生物 VOCs 以及乙二醛和甲基乙二醛在气溶胶表面的非 均相反应 (Li et al, 2011b; Feng et al, 2016)。 利用 FTUV 辐射模式计算光解速率,考虑了气 溶胶和云对光解速率的影响(Li et al, 2005; Li et al, 2011a)。化学物质的湿沉降基于CMAQ 模块中的方法,干沉降的表面阻抗参数化采用 Wesely(1989)的方法。

等将中尺度气象数值预报模式 WRF 与大气化学

本研究采用 NCEP/NCAR 提供的 FNL 全球 再分析资料为模式提供气象场初始和边界条件, 时间分辨率为6h,水平分辨率为1°×1°。采用 CAM-Chem 输出结果作为化学场初始和边界条 件,时间分辨率为6h。使用 MEGAN 在线计算 生物源排放(Guenther et al, 2006),水平分辨率 为1 km×1 km。本研究中使用的人为源排放清单 为MEIC 排放清单。该排放清单由清华大学开发 (Zhang et al, 2009; Li et al, 2017),主要适用 于中国大气污染研究,该清单中人为排放源主要分 为农业、工业、能源生产、居民生活和交通运输 五类。



图 1 关中地区地理位置与模式模拟区域

Fig. 1 The geographic location of GZB and the WRF-Chem Model simulation domain with topography

| 表 1 WRF-Che<br>Tab. 1 WRF-Chem me                         | m 模式配置<br>odel configurations                       |  |  |  |
|-----------------------------------------------------------|-----------------------------------------------------|--|--|--|
| 选项 Items                                                  | 设置 Configurations                                   |  |  |  |
| 模拟区域 Simulation domain                                    | 关中盆地 Guanzhong Basin                                |  |  |  |
| 模拟时间 Simulation period                                    | 2019年1月2—14日 January 2—14, 2019                     |  |  |  |
| 模拟域中心 Simulation center                                   | 34°15′N, 109°E                                      |  |  |  |
| 水平分辨率 Horizontal resolution                               | 6 km×6 km                                           |  |  |  |
| 垂直分层 Vertical distribution                                | 35 层 35 levels                                      |  |  |  |
| 微物理参数化方案 Microphysics parameterization scheme             | WSM6 方案 WSM6 scheme                                 |  |  |  |
| 边界层参数化方案 Boundary layer parameterization scheme           | MYJ TKE 方案 MYJ TKE scheme                           |  |  |  |
| 近地面参数化方案 Surface layer parameterization scheme            | MYJ 近地面方案 MYJ near surface scheme                   |  |  |  |
| 陆面过程参数化方案 Land surface parameterization scheme            | Noah 陆面过程方案 Noah land surface scheme                |  |  |  |
| 长波辐射参数化方案 Longwave radiation parameterization scheme      | Goddard 长波辐射方案 Goddard longwave scheme              |  |  |  |
| 短波辐射参数化方案 Shortwave radiation parameterization scheme     | Goddard 短波辐射方案 Goddard shortwave scheme             |  |  |  |
| 积云对流参数化方案 Cumulus parameterization scheme                 | 无 None                                              |  |  |  |
| 气相化学机制 Gas phase chemistry mechanism                      | SAPRC-99 机制 SAPRC-99 mechanism                      |  |  |  |
| 气溶胶机制 Aerosol mechanism                                   | CMAQ 气溶胶模块 CMAQ aerosol module                      |  |  |  |
| 无机气溶胶 Inorganic aerosol mechanism                         | ISORROPIA 1.7 版本 ISORROPIA 1.7 version              |  |  |  |
| 有机气溶胶 Organic aerosol mechanism                           | VBS 建模方法 VBS modeling approach                      |  |  |  |
| 光化学机制 Photochemical mechanism                             | FTUV 机制 FTUV mechanism                              |  |  |  |
| 干沉降 Dry deposition                                        | Wesely (1989)                                       |  |  |  |
| 湿沉降 Wet deposition                                        | CMAQ 模块 CMAQ module                                 |  |  |  |
| 气象场初始和边界条件 Meteorological initial and boundary conditions | NCEP FNL 1°×1° 再分析资料 NCEP FNL 1°×1° reanalysis data |  |  |  |
| 化学场初始和边界条件 Chemical initial and boundary conditions       | CAM-Chem 输出 CAM-Chem output                         |  |  |  |
| 人为源排放清单 Anthropogenic emission inventory                  | MEIC 排放清单 MEIC emission inventory                   |  |  |  |
| 生物源排放清单 Biogenic emission inventory                       | MEGAN 模式 MEGAN model                                |  |  |  |

关中盆地 5 个城市 5 种主要大气污染物—— PM<sub>2.5</sub>、NO<sub>2</sub>、SO<sub>2</sub>、O<sub>3</sub>、CO 观测数据从中国生态 环境部(https://www.mee.gov.cn/)发布的城市空 气质量实时监测数据获得。宝鸡 PM<sub>2.5</sub> 主要组分 有机气溶胶(OA)、硫酸盐、硝酸盐、铵盐观 测数据通过飞行时间质谱 - 气溶胶化学组分检 测仪(TOF-ACSM)分析得到,时间分辨率均为1h。西安气象条件观测数据来自网站(http://meteomanz.com/),包括气温、相对湿度、风速和风向,时间分辨率为3h。监测点为泾河国家基准 气候站(34°15′36″N, 108°34′48″E),海拔高度为410.1m。

#### 1.2 统计方法

为了评价WRF-Chem模式模拟结果的可靠性, 定义三个统计参数均值偏差(MB)、均方根误差 (RMSE)、一致性指数(IOA),如下所示:

$$MB = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$$
(1)

$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N} (P_i - O_i)^2\right]^{\frac{1}{2}}$$
(2)

IOA=1-
$$\sum_{i=1}^{N} (P_i - O_i)^2 \div \sum_{i=1}^{N} (|P_i - \overline{O}| + |O_i - \overline{O}|)^2$$
 (3)

式中:  $P_i$ 和 $O_i$ 分别表示模拟变量和观测变量。N为参与比较的总数,  $\overline{O}$ 为观测变量的平均值。IOA的取值范围为0-1, 其值越趋近于1,表示模拟效果越好。

# 2 结果和讨论

160

140

120

100

80

60 40

20

·m<sup>-3</sup>)

质量浓度 Mass concentration / (μg·

## 2.1 关中盆地大气污染状况

图 2a 统计了 2013—2018 年冬季(每年 12 月 1 日至次年 2 月 28 日或 29 日)关中盆地 5 个城市

(西安、宝鸡、咸阳、渭南和铜川) PM,5、CO、 NO<sub>2</sub>、O<sub>3</sub>、SO<sub>2</sub>的小时平均质量浓度年变化。结 果表明: 2013-2018年关中盆地 CO和 SO, 的 平均质量浓度整体呈下降趋势,其中 SO,的下降 最为显著, 2018年相比 2013年下降 80.14%。说 明 APPCAP 的实施效果显著。PM2, 和 NO2在6a 间呈现波动状态,在2014年均呈现最低值,其 中一个主要原因是2014年冬季有利天气形势日 数增加(李晓配等, 2017)。2014年后开始反 弹, PM, 5和 NO, 在 2016年达到反弹后的最高 值,之后开始下降,在2018年PM,5又有所回 升。虽然在 2013 年 APPCAP 实施后, 关中盆地 冬季 PM25 平均浓度相对于 2013 年下降明显, 但 除 2014 年外,其他年份冬季 PM,5 平均质量浓度 均超过100 μg·m<sup>-3</sup>,说明关中盆地冬季颗粒物污 染形势依然严峻。与其他污染物不同, O<sub>3</sub>浓度虽 然有小幅度波动但总体呈上升趋势。冬季 O<sub>3</sub> 平均 浓度由 2013 年的 25.17 µg·m<sup>-3</sup> 增长到 2018 年的 30.73 µg·m<sup>-3</sup>(增长了 22.09%),表明大气氧化 能力的增强。





Fig. 2 Averaged mass concentrations of PM<sub>2.5</sub>, CO, NO<sub>2</sub>, O<sub>3</sub> and SO<sub>2</sub> during winter from 2013 to 2018 in GZB (observation data from the Ministry of Ecology and Environment of the People's Republic of China) (a); OC and EC contents (bar) and OC/EC (line) during winter from 2013 to 2018 in Xi'an (b)

OC 和 EC 是 PM<sub>2.5</sub> 的重要组成部分,OC/EC 可以用来判断二次有机碳(SOC)的存在与否。当 OC/EC 大于 2 时,基本可以判断存在光化学反应 生成的SOC (Turpin and Huntzicker, 1995; Kim et al, 1999)。OC/EC 越大,二次有机碳浓度越 高(Chow et al, 1996)。图 2b 统计分析了西安 2013—2018 年冬季 PM<sub>2.5</sub> 中 OC 与 EC 含量,结果 显示 OC/EC 均超过了 3,这意味着二次气溶胶在 西安地区冬季颗粒物污染中占有重要作用(Zhou et al, 2012; Deng et al, 2013)。2013—2018年, 西安冬季 OC/EC 呈现先下降后上升再下降的变 化趋势,在 2014年达到最低值,在 2017年达到 最高值,与 O<sub>3</sub>浓度变化趋势较为一致。2016年 和 2017年的 OC/EC 相比 2013年显著上升,分别 上升 59.57% 和 83.47%, 2018 年略有上升,约升高 9.51%。这种增加可能是由 OC 和 EC 排放的变化引起的,但也可以部分归因于大气氧化能力的增加。

关中盆地 PM25 浓度峰值通常出现在冬季1 月,这是由于冬季气温和气压较低,降水较少, 逆温层较强,大气边界层较薄(Akpinar et al, 2008; Galindo et al, 2011)。加上特殊的盆地地 形环境, 使关中盆地大气大多处于稳定状态, 大 气垂直交换弱,大气污染物累积效应显著(胡琳 等,2019)。污染物难以扩散和清除时,会在关 中盆地中积聚并发生二次反应,导致空气污染更 加严重。此外,中国北方冬季采暖期也会导致大 量 PM<sub>25</sub> 前体物的排放。因此,本文选择关中盆 地 2019 年 1 月 2-14 日的一次重污染天气过程, 利用 WRF-Chem 模式模拟了这一时期重要大气污 染物和 PM25 组分的时空演变规律,并结合大气污 染物观测资料、PM25组分分析资料以及气象资料 对模式的模拟能力进行了评估。然后通过敏感性 实验定量分析了 NO<sub>x</sub> 和 SO<sub>2</sub> 分别减排与同时减排 对大气污染物和 PM25 重要组分的影响,并对各减 排效果进行了对比。最后通过对各敏感性实验中 AWC 的变化进行分析以探究产生不同减排效果的 原因。

#### 2.2 模式模拟检验

选取模拟期间各监测点PM25、O3、NO2、 SO<sub>2</sub>、CO的平均质量浓度观测数据与模式模拟 结果进行对比,验证模式对关中盆地城市群大气 污染物时间演变规律的模拟能力。图3显示了关 中地区 2019 年 1 月 2 — 14 日近地表 PM<sub>2.5</sub>、O<sub>3</sub>、 NO<sub>2</sub>、SO<sub>2</sub>和CO浓度的日变化特征。分析显示: 该模式较好再现了模拟期间 PM,5 质量浓度的 日变化趋势, IOA为0.88。但由于气象场(Bei et al, 2012)的不确定性, 该模式高估了1月9日 的 PM25 浓度。由图 4 发现模式严重低估西安 1 月 9日的风速,由此推测模式高估 PM2.5 浓度是由于 低估了颗粒物的扩散过程(Bei et al, 2017)。 模式对 O,浓度日变化趋势模拟效果也比较好, IOA 为 0.82。准确再现了光化学反应导致的 O<sub>3</sub> 高 值(下午)与由于滴定效应导致的O<sub>3</sub>低值(夜 晚)。但1月9日白天,模式对O,浓度存在低 估,这可能是由于模式高估了 PM25, PM25 可以

通过对辐射的吸收作用影响到达地面的辐射强度,使光化学反应光解速率下降,不利于 O<sub>3</sub> 的生成。1月10日晚至11日清晨,模式对 O<sub>3</sub>浓度存在严重高估,模式还低估了同期 NO<sub>2</sub>浓度,这可能是排放清单中 NO<sub>x</sub> 排放的不确定性造成的(Lei et al, 2004; Song et al, 2010)。模式还合理地再现了 NO<sub>2</sub> 的日变化曲线,其中 IOA 为 0.79, MB 为  $-0.2 \ \mu g \cdot m^{-3}$ 。但由于气象条件模拟偏差和排放清单的不确定,模式对 NO<sub>2</sub> 仍存在略微的高估或低估。考虑到 SO<sub>2</sub> 主要来自点源排放,其模拟对风场的不确定性更为敏感(Bei et al, 2017),该模式对 SO<sub>2</sub>模拟的偏差较大,IOA 为 0.50。该模式对 CO 浓度的日变化趋势也有较好的模拟效果,IOA 和 MB 分别为 0.81 和  $-0.0 \ \mu g \cdot m^{-3}$ 。

图 5 将宝鸡市 PM<sub>2.5</sub> 重要组分有机气溶胶 (OA)、硫酸盐、硝酸盐和铵盐的模式模拟结 果与逐时观测数据(TOF-ACSM分析)进行对 比,发现模式总体低估了 OA 的质量浓度,IOA 为 0.58,MB 达到了-16.8 µg·m<sup>-3</sup>。模式中关于 OA 形成机制的处理、排放、气象条件以及观测数 据的获取都可能导致 OA 模拟偏差。对于硫酸盐 的模拟,模式整体上低估了硫酸盐的质量浓度, MB 达到了-4.7 µg·m<sup>-3</sup>,IOA 为 0.62。模式在 1 月 7 日前对硫酸盐存在稍许低估,在 1 月 9 日和 10 日对硫酸盐存在严重高估,这可能和 SO<sub>2</sub>模拟 对风场的不确定性较敏感有关。模式对宝鸡市的 硝酸盐和铵盐模拟效果较好,IOA 分别为 0.86 和 0.80。

考虑到气象条件在大气污染模拟中的重要作 用,可以通过气象场模拟结果与观测数据的比较 来评价模式的模拟能力。根据模式模拟结果与西 安气象站观测到的近地表温度、相对湿度、风速 和风向的对比(图4),模拟期间西安市温度的 变化范围为-8-8℃,该模式成功地再现了温度 的时间变化,IOA为0.83。该模式也能很好地再 现近地面相对湿度的时间变化,IOA为0.74, MB为1.79%。观测数据显示:1月10—13日西 安市的相对湿度峰值接近100%,而模式对此峰 值均存在严重低估,显示出模式在模拟相对湿度 超过 80%时的局限性。与观测结果相比,该模 式在模拟近地表风速和风向的时空变化时有所欠 缺,IOA分别为0.62和0.61,这主要和模式大 气动力过程的不确定性以及边界层发展变化过程 较为复杂有关。在模拟期间,西安市的风速大多低于4m·s<sup>-1</sup>,不利于污染物的扩散,污染物在

盆地积聚有利于二次反应的发生,使得污染逐渐 加剧。



图 3 2019 年 1 月 2—14 日关中盆地模拟(红线)和观测(黑点)的近地面 PM<sub>2.5</sub>、O<sub>3</sub>、NO<sub>2</sub>、SO<sub>2</sub>和 CO 的 小时质量浓度变化(观测数据为关中盆地所有观测站点的平均值)

Fig. 3 Comparison of predicted (red line) and measured (black dots) diurnal profiles of near-surface hourly PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub> and CO concentrations (average of all ambient monitoring stations) from 2 to 14 January 2019 in GZB

#### 2.3 敏感性实验

## 2.3.1 NO<sub>x</sub> 排放对颗粒物污染的影响

本研究将关中盆地 2019 年 1 月 2—14 日 PM<sub>2.5</sub> 浓度较高的一次污染事件作为基准实验(REF)。 为评估 NO<sub>x</sub> 减排对大气中 PM<sub>2.5</sub> 浓度及组分的 影响,将人为源排放清单 MEIC 中的 NO<sub>x</sub> 排放 量分别减少 25%、50% 和 75% 作为敏感性实验 SEN1、SEN2 和 SEN3。表 2显示当 NO<sub>x</sub> 人为排放 量分别下降 25%、50%、75% 时,大气中 NO<sub>2</sub> 污 染物分别下降了 19.33%、44.51%、73.21%。由于 NO<sub>x</sub>浓度的二次变化(NO<sub>3</sub>+NO<sub>2</sub> ⇔ N<sub>2</sub>O<sub>5</sub>),NO<sub>x</sub> 排放与NO<sub>2</sub>浓度之间呈非线性关系(Shah et al, 2020)。NO<sub>x</sub> 排放量的减少使大气中O<sub>3</sub>浓度骤 增,当NO<sub>x</sub> 减少75%时,O<sub>3</sub>浓度可增加大约2 倍,大气氧化能力显著上升,这主要是NO对O<sub>3</sub> 的滴定效应减弱所致。NO<sub>x</sub>作为PM<sub>2.5</sub>重要组分硝 酸盐的前体物,其排放量的变化对大气中PM<sub>2.5</sub>浓 度却影响不大,当 NO<sub>x</sub> 排放下降 25% 时,PM<sub>2.5</sub> 呈 现微弱的上升趋势(0.25%)。当 NO<sub>x</sub> 排放量下降 75% 时,PM<sub>2.5</sub> 浓度只下降了 4.6%,平均浓度从 188.09  $\mu$ g·m<sup>-3</sup>下降到 179.44  $\mu$ g·m<sup>-3</sup>。其主要原因 在于 NO<sub>x</sub> 减排导致的大气氧化能力的增强有利于 PM<sub>2.5</sub> 中二次组分的生成,而二次组分在严重气溶 胶污染中扮演重要角色(Hu et al, 2015)。



图 4 2019 年 1 月 2—14 日西安模拟(红线)和观测(黑点)的近地面温度(a)、 相对湿度(b)、风速(c)和风向(d)的小时质量浓度变化

Fig. 4 Comparison of predicted (red line) and measured (black dots) diurnal profiles of near-surface temperature (a), relative humidity (b), wind speed (c) and wind direction (d) from 2 to 14 January 2019 in Xi'an

模拟期间 PM<sub>2.5</sub> 平均质量浓度为 188.09 μg·m<sup>-3</sup>。 图 6 展示了 WRF-Chem 模式对关中盆地 2019 年 1 月 2—14 日重污染天气过程中的 PM<sub>2.5</sub> 化学组分占 比的模拟结果。关中盆地 PM<sub>2.5</sub> 的主要组分有机气 溶胶(OA=POA+SOA)占比达到 29.07%。硝酸 盐、硫酸盐、铵盐含量也较高,分别占23.22%、8.62%和11.19%。PM<sub>25</sub>中主要二次组分(包括硝酸盐、硫酸盐、铵盐和SOA)占比超过50%,表明二次气溶胶在严重雾霾事件中的重要作用。



图 5 2019 年 1 月 2—14 日宝鸡模拟(红线)和观测(黑点)的近地面 PM<sub>25</sub> 的化学组分 有机气溶胶(a)、硫酸盐(b)、硝酸盐(c)和铵盐(d)的小时质量浓度变化

Fig. 5 Comparison of predicted (red line) and measured (black dots) diurnal profiles of organic aerosol (a), sulfate (b), nitrate (c) and ammonium (d) from 2 to 14 January 2019 in Baoji

| 表 2 关中盆地 2019 年 1 月 2—14 日 REF、SEN1、SEN2、SEN3 中 5 种主要污染物<br>NO <sub>2</sub> 、O <sub>3</sub> 、PM <sub>2.5</sub> 、SO <sub>2</sub> 和 CO 平均质量浓度<br>Tab. 2 Averaged mass concentrations of air pollutants (NO <sub>2</sub> , O <sub>3</sub> , PM <sub>2.5</sub> , SO <sub>2</sub> and CO) in REF case and<br>SEN1, SEN2, SEN3 case from 2 to 14 January 2019 in GZB |        |        |               |        |               |        |               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------|--------|---------------|--------|---------------|--|--|
| 污染物                                                                                                                                                                                                                                                                                                                                                            | REF    | SEN1   | 变化率           | SEN2   | 变化率           | SEN3   | 变化率           |  |  |
| Pollutants                                                                                                                                                                                                                                                                                                                                                     |        |        | Change rate/% |        | Change rate/% |        | Change rate/% |  |  |
| $NO_2/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                                                                    | 68.35  | 55.14  | -19.33        | 37.93  | -44.51        | 18.31  | -73.21        |  |  |
| $O_3/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                                                                     | 21.12  | 30.01  | 42.09         | 45.53  | 115.58        | 61.31  | 190.29        |  |  |
| $PM_{2.5}/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                                                                | 188.09 | 188.56 | 0.25          | 186.41 | -0.89         | 179.44 | -4.60         |  |  |
| $SO_2/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                                                                    | 16.55  | 16.16  | -2.36         | 15.50  | -6.36         | 14.83  | -10.39        |  |  |
| $CO/(mg \cdot m^{-3})$                                                                                                                                                                                                                                                                                                                                         | 1.93   | 1.94   | 0.52          | 1.94   | 0.52          | 1.95   | 1.04          |  |  |

表 3 展示了 NO<sub>x</sub> 排放量对 PM<sub>2.5</sub> 主要组分的 影响。虽然 NO<sub>x</sub> 减排使硝酸盐气溶胶前体物显著 下降,但大气氧化能力的增强促进了 NO<sub>2</sub> 向硝酸 盐的转化,因此即使 NO<sub>x</sub> 减排量达到 75%,硝酸 盐气溶胶也只下降了 29.42%。硫酸盐和 SOA 在 大气氧化能力的影响下呈现上升趋势。当 O<sub>3</sub> 上升

190.29%时,硫酸盐和 SOA 分别上升了 22.70% 和 4.97%,说明硫酸盐的生成比 SOA 对 O<sub>3</sub> 浓度变化 更敏感。铵盐的变化主要取决于硝酸盐和硫酸盐 的变化,而硝酸盐在 PM<sub>2.5</sub> 中含量远大于硫酸盐含 量,因此铵盐浓度呈下降趋势。

2.3.2 SO<sub>2</sub> 排放对颗粒物污染的影响

为评估 SO,减排对大气中 PM,5浓度及组分的 影响,将人为源排放清单 MEIC 中的 SO,排放量分 别减少 25%、50% 和 75% 作为敏感性实验 SEN4、 SEN5 和 SEN6。表4显示当 MEIC 排放清单中的 SO,降低25%、50%、75%时,大气中污染物SO, 质量浓度分别下降 18.13%、35.47% 和 53.11%。 SO<sub>2</sub>作为PM<sub>25</sub>中主要组分硫酸盐的前体物,其下 降 25%、50%、75% 时, PM<sub>25</sub>从 188.09 µg·m<sup>-3</sup>分别 降至 186.78 µg·m<sup>-3</sup>、185.87 µg·m<sup>-3</sup>、184.82 µg·m<sup>-3</sup>, 分别下降了 0.70%、1.18% 和 1.74%, 减排效果并 不明显。表5显示了大气中的PM,5主要组分随 SO<sub>2</sub> 排放量变化情况。当 MEIC 排放清单中 SO<sub>2</sub> 排 放量下降时,大气中硝酸盐含量略微增加,主要 是由于 SO, 和 NO, 在颗粒物硫酸盐和硝酸盐生成 过程中对颗粒物吸附水存在竞争作用, 当大气中 SO,含量降低时,更有利于 NO,向硝酸盐的转化 (贾小红等,2021)。当 SO<sub>2</sub> 排放量降低 25%、 50%、75% 时,大气 PM<sub>2.5</sub> 组分硫酸盐分别降低 6.97%、13.51%、20.48%。但由于硫酸盐在 PM<sub>2.5</sub> 中占比较低,为 8.62%(图 6),所以 PM<sub>2.5</sub> 质量 浓度变化不大。由于铵盐生成受酸性气体 H<sub>2</sub>SO<sub>4</sub> 影响,所以 SO<sub>2</sub> 排放量下降会导致铵盐的微弱 降低。



图 6 关中盆地 2019 年 1 月 2—14 日 PM<sub>2.5</sub> 的化学组成 Fig. 6 Chemical composition of PM<sub>2.5</sub> averaged from 2 to 14 January 2019 in GZB

| 表 3 关中盆地 2019 年 1 月 2—14 日 REF、SEN1、SEN2、SEN3 中 PM <sub>2.5</sub><br>主要组分硝酸盐、硫酸盐、铵盐、SOA 和 POA 平均质量浓度<br>Tab. 3 Averaged mass concentrations of chemical composition of PM <sub>2.5</sub> (nitrate, sulfate, ammonium, SOA and POA) in<br>REF case and SEN1, SEN2, SEN3 case from 2 to 14 January 2019 in GZB |       |       |                      |       |                      |       |                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------------|-------|----------------------|-------|----------------------|--|
| 污染物<br>Pollutants                                                                                                                                                                                                                                                                                            | REF   | SEN1  | 变化率<br>Change rate/% | SEN2  | 变化率<br>Change rate/% | SEN3  | 变化率<br>Change rate/% |  |
| 硝酸盐 Nitrate/(μg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 43.68 | 42.15 | -3.50                | 38.24 | -12.45               | 30.83 | -29.42               |  |
| 硫酸盐 Sulfate/(µg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 16.21 | 17.11 | 5.55                 | 18.39 | 13.45                | 19.89 | 22.70                |  |
| 铵盐 Ammonium/(µg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 21.05 | 20.95 | -0.48                | 20.37 | -3.23                | 18.94 | -10.02               |  |
| $SOA/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                   | 22.75 | 23.56 | 3.56                 | 24.11 | 5.98                 | 23.88 | 4.97                 |  |
| $POA/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                   | 31.92 | 32.06 | 0.44                 | 32.20 | 0.88                 | 32.32 | 1.25                 |  |

表 4 关中盆地 2019 年 1 月 2—14 日 REF、SEN4、SEN5、SEN6 中 5 种主要污染物 NO<sub>2</sub>、O<sub>3</sub>、PM<sub>2.5</sub>、SO<sub>2</sub>和 CO 平均质量浓度

Tab. 4Averaged mass concentrations of air pollutants (NO2, O3, PM2.5, SO2 and CO) in REF case and<br/>SEN4, SEN5, SEN6 case from 2 to 14 January 2019 in GZB

| 污染物<br>Pollutants               | REF    | SEN4   | 变化率<br>Change rate/% | SEN5   | 变化率<br>Change rate/% | SEN6   | 变化率<br>Change rate/% |
|---------------------------------|--------|--------|----------------------|--------|----------------------|--------|----------------------|
| $NO_2/(\mu g \cdot m^{-3})$     | 68.35  | 68.34  | -0.01                | 68.44  | 0.13                 | 68.48  | 0.19                 |
| $O_3/(\mu g\cdot m^{^{-3}})$    | 21.12  | 21.12  | 0.00                 | 21.11  | -0.05                | 21.18  | 0.28                 |
| $PM_{2.5}/(\mu g \cdot m^{-3})$ | 188.09 | 186.78 | -0.70                | 185.87 | -1.18                | 184.82 | -1.74                |
| $SO_2/(\mu g \cdot m^{-3})$     | 16.55  | 13.55  | -18.13               | 10.68  | -35.47               | 7.76   | -53.11               |
| $CO/(mg \cdot m^{-3})$          | 1.93   | 1.93   | 0.00                 | 1.93   | 0.00                 | 1.93   | 0.00                 |

地球环境学报

| 表 5 关中盆地 2019 年 1 月 2—14 日 REF、SEN4、SEN5、SEN6 中<br>PM <sub>2.5</sub> 主要组分硝酸盐、硫酸盐、铵盐、SOA 和 POA 平均质量浓度<br>Tab. 5 Averaged mass concentrations of chemical composition of PM <sub>2.5</sub> (nitrate, sulfate, ammonium, SOA and POA) in REF<br>case and SEN4, SEN5, SEN6 case from 2 to 14 January 2019 in GZB |       |       |                      |       |                      |       |                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------------------|-------|----------------------|-------|----------------------|--|--|
| 污染物<br>Pollutants                                                                                                                                                                                                                                                                                            | REF   | SEN4  | 变化率<br>Change rate/% | SEN5  | 变化率<br>Change rate/% | SEN6  | 变化率<br>Change rate/% |  |  |
| 硝酸盐 Nitrate/(µg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 43.68 | 43.93 | 0.57                 | 44.25 | 1.30                 | 44.56 | 2.01                 |  |  |
| 硫酸盐 Sulfate/(µg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 16.21 | 15.08 | -6.97                | 14.02 | -13.51               | 12.89 | -20.48               |  |  |
| 铵盐 Ammonium/(µg·m <sup>-3</sup> )                                                                                                                                                                                                                                                                            | 21.05 | 20.74 | -1.47                | 20.47 | -2.76                | 20.18 | -4.13                |  |  |
| $SOA/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                   | 22.75 | 22.65 | -0.44                | 22.69 | -0.26                | 22.68 | -0.31                |  |  |
| $POA/(\mu g \cdot m^{-3})$                                                                                                                                                                                                                                                                                   | 31.92 | 31.87 | -0.16                | 31.89 | -0.09                | 31.88 | -0.13                |  |  |

2.3.3 NO<sub>x</sub>和 SO<sub>2</sub>协同效应对颗粒物污染的影响

为评估 NO<sub>x</sub>和 SO<sub>2</sub>共同减排对大气中 PM<sub>2.5</sub> 浓度及组分的影响,将人为源排放清单 MEIC 中 的 NO<sub>x</sub>和 SO<sub>2</sub>同时减排,作为敏感性实验 SEN7 (NO<sub>x</sub>和 SO<sub>2</sub>各减排 25%)、SEN8(NO<sub>x</sub>和 SO<sub>2</sub>各 减排 50%)、SEN9(NO<sub>x</sub>和 SO<sub>2</sub>各减排 75%)。 表 6显示当 MEIC 清单中 NO<sub>x</sub>和 SO<sub>2</sub> 同时下降 时,由于 NO<sub>x</sub>减排引起的 O<sub>3</sub> 质量浓度的大幅度上 升,即使当 NO<sub>x</sub>和 SO<sub>2</sub> 排放量分别下降 75% 时, 大气中 PM<sub>2.5</sub> 质量浓度从 188.09  $\mu$ g·m<sup>-3</sup>下降到 174.76 μg·m<sup>-3</sup>, 仅下降 7.09%。考虑到 NO<sub>2</sub> 和 SO<sub>2</sub> 在 PM<sub>2.5</sub> 生成中的协同作用, 比较了分别减排 NO<sub>x</sub> 和 SO<sub>2</sub> 的减排效果之和与共同减排 NO<sub>x</sub> 和 SO<sub>2</sub> 的 减排效果, 对比结果如表 7 所示。当减排比例为 25% 时, 协同效应对大气中各污染物浓度影响可 忽略不计。当减排比例为 50% 和 75% 时, 协同效 应对大气中 O<sub>3</sub> 浓度有微弱影响,可小幅度增强大 气氧化能力。协同效应使大气中 SO<sub>2</sub> 浓度有升高趋 势, 而 PM<sub>2.5</sub> 浓度轻微下降, 减排比例为 75% 时, 协同效应可导致 PM<sub>2.5</sub> 质量浓度多下降 0.75%。

表 6 关中盆地 2019 年 1 月 2—14 日 REF、SEN7、SEN8、SEN9 中 5 种主要污染物 NO<sub>2</sub>、O<sub>3</sub>、PM<sub>25</sub>、SO<sub>2</sub>和 CO 平均质量浓度

Tab. 6 Averaged mass concentrations of air pollutants (NO<sub>2</sub>, O<sub>3</sub>, PM<sub>2.5</sub>, SO<sub>2</sub> and CO) in REF case and SEN7, SEN8, SEN9 case from 2 to 14 January 2019 in GZB

| from 2 to 11 building 2017 in GED |        |        |               |        |               |        |               |  |  |
|-----------------------------------|--------|--------|---------------|--------|---------------|--------|---------------|--|--|
| 污染物                               | DEE    | SEN7   | 变化率           | SEN8   | 变化率           | SEN0   | 变化率           |  |  |
| Pollutants                        | KLI    | SLIN/  | Change rate/% | SEINO  | Change rate/% | SEIVE  | Change rate/% |  |  |
| $NO_2/(\mu g \cdot m^{-3})$       | 68.35  | 55.15  | -19.31        | 37.97  | -44.45        | 18.22  | -73.34        |  |  |
| $O_3/(\mu g \cdot m^{-3})$        | 21.12  | 31.05  | 47.02         | 45.73  | 116.52        | 61.60  | 191.67        |  |  |
| $PM_{2.5}/(\mu g \cdot m^{-3})$   | 188.09 | 187.44 | -0.35         | 183.82 | -2.27         | 174.76 | -7.09         |  |  |
| $SO_2/(\mu g \cdot m^{-3})$       | 16.55  | 13.22  | -20.12        | 9.83   | -40.60        | 6.46   | -60.97        |  |  |
| $CO/(mg \cdot m^{-3})$            | 1.93   | 1.94   | 0.52          | 1.94   | 0.52          | 1.95   | 1.04          |  |  |

表 7 关中盆地 2019 年 1 月 2—14 日 NO<sub>x</sub> 和 SO<sub>2</sub> 分开减排和共同减排 4 种主要污染物 NO<sub>2</sub>、O<sub>3</sub>、PM<sub>2.5</sub> 和 SO<sub>2</sub> 的变化对比

Tab. 7 Comparison of the changes of four major pollutants (NO<sub>2</sub>, O<sub>3</sub>, PM<sub>2.5</sub> and SO<sub>2</sub>) from 2 to 14 January 2019 in GZB by reducing NO<sub>x</sub> and SO<sub>2</sub> separately and simultaneously

| 实验             | 污染物变化率 Pollutant change rate/% |                |                   | 实验     | 污染物            | 变化率 Po          | llutant chang  | e rate/%          |        |
|----------------|--------------------------------|----------------|-------------------|--------|----------------|-----------------|----------------|-------------------|--------|
| Case           | NO <sub>2</sub>                | O <sub>3</sub> | PM <sub>2.5</sub> | $SO_2$ | Case           | NO <sub>2</sub> | O <sub>3</sub> | PM <sub>2.5</sub> | $SO_2$ |
| SEN1           | -19.33                         | 42.09          | 0.25              | -2.36  | SEN8           | -44.45          | 116.52         | -2.27             | -40.60 |
| SEN4           | -0.01                          | 0.00           | -0.70             | -18.13 | SEN8-SEN2-SEN5 | -0.07           | 0.99           | -0.20             | 1.23   |
| SEN1+SEN4      | -19.34                         | 42.09          | -0.45             | -20.49 | SEN3           | -73.21          | 190.29         | -4.60             | -10.39 |
| SEN7           | -19.31                         | 47.02          | -0.35             | -20.12 | SEN6           | 0.19            | 0.28           | -1.74             | -53.11 |
| SEN7-SEN1-SEN4 | 0.03                           | -0.07          | 0.10              | 0.37   | SEN3+SEN6      | -73.02          | 190.57         | -6.34             | -63.50 |
| SEN2           | -44.51                         | 115.58         | -0.89             | -6.36  | SEN9           | -73.34          | 191.67         | -7.09             | -60.97 |
| SEN5           | 0.13                           | -0.05          | -1.18             | -35.47 | SEN9-SEN3-SEN6 | -0.32           | 1.10           | -0.75             | 2.53   |
| SEN2+SEN5      | -44.38                         | 115.53         | -2.07             | -41.83 |                |                 |                |                   |        |

表 8 展示了大气 PM<sub>2.5</sub> 主要组分随 NO<sub>x</sub> 和 SO<sub>2</sub> 排放量变化情况。当 NO<sub>x</sub> 和 SO<sub>2</sub> 排放量分别降低 75% 时,硝酸盐可降低 27.59%,主要为 NO<sub>x</sub> 减排 导致,而硫酸盐仅下降 4.01%,这是由大气氧化 能力的上升导致的。通过比较硝酸盐和硫酸盐下 降比例发现,硫酸盐的生成比硝酸盐对 O<sub>3</sub> 浓度变 化更敏感。在 NO<sub>3</sub><sup>-</sup>和 SO<sub>4</sub><sup>-</sup>综合作用下,PM<sub>2.5</sub> 中铵 盐质量浓度呈下降趋势。表 9 展示了协同效应对 PM<sub>2.5</sub> 主要组分的影响。协同效应对硝酸盐和 SOA 影响微弱,可忽略不计,主要影响  $PM_{2.5}$ 中的硫酸 盐组分。当减排比例达到 75% 时,协同效应导致 当硫酸盐下降比例可达 6.23%,由  $SO_4^{2-}$ 导致的铵 盐下降比例为 1.91%。但由于硫酸盐在  $PM_{2.5}$ 中占 比较低,所以  $PM_{2.5}$ 下降比例微弱,仅为 0.75%, 约 1.4  $\mu$ g·m<sup>-3</sup>。由此发现,虽然 NO<sub>x</sub>和 SO<sub>2</sub>减排 对  $PM_{2.5}$ 减排的协同效应影响微弱,但仍对  $PM_{2.5}$ 减排有积极影响,因此,在关中地区冬季严重雾 霾防治过程中,可考虑 NO<sub>x</sub>和 SO<sub>2</sub>同时减排。

#### 表 8 关中盆地 2019 年 1 月 2—14 日 REF、SEN7、SEN8、SEN9 中 PM<sub>2.5</sub> 主要组分硝酸盐、 硫酸盐、铵盐、SOA 和 POA 平均质量浓度

Tab. 8 Averaged mass concentrations of chemical composition of PM<sub>2.5</sub> (nitrate, sulfate, ammonium, SOA and POA) in REF case and SEN7, SEN8, SEN9 case from 2 to 14 January 2019 in GZB

| 污染物                               | DEE   | OFN/7 | 变化率           | CENIO | 变化率           | GENIO | 变化率           |
|-----------------------------------|-------|-------|---------------|-------|---------------|-------|---------------|
| Pollutants                        | KEF   | SEN/  | Change rate/% | SEIN8 | Change rate/% | SEN9  | Change rate/% |
| 硝酸盐 Nitrate/(µg·m <sup>-3</sup> ) | 43.68 | 42.53 | -2.63         | 38.90 | -10.94        | 31.63 | -27.59        |
| 硫酸盐 Sulfate/(µg·m <sup>-3</sup> ) | 16.21 | 15.95 | -1.60         | 15.79 | -2.59         | 15.56 | -4.01         |
| 铵盐 Ammonium/(µg·m <sup>-3</sup> ) | 21.05 | 20.67 | -1.81         | 19.68 | -6.51         | 17.67 | -16.06        |
| $SOA/(\mu g \cdot m^{-3})$        | 22.75 | 23.51 | 3.34          | 24.09 | 5.89          | 23.85 | 4.84          |
| $POA/(\mu g \cdot m^{-3})$        | 31.92 | 32.03 | 0.34          | 32.16 | 0.75          | 32.29 | 1.16          |

#### 表 9 关中盆地 2019 年 1 月 2—14 日 NO<sub>x</sub> 和 SO<sub>2</sub> 分开减排和共同减排 PM<sub>25</sub> 主要组分硝酸盐、硫酸盐、铵盐和 SOA 的变化对比

Tab. 9 Comparison of the changes of chemical composition of PM<sub>2.5</sub> (nitrate, sulfate, ammonium and SOA) from 2 to 14 January 2019 in GZB by reducing NO<sub>x</sub> and SO<sub>2</sub> separately and simultaneously

| 合心             | 污染物     | 变化率 Pa  | ollutant change ra | ate/% | 立政                                    | 污染物     | 变化率 Po  | ollutant change ra | ite/% |
|----------------|---------|---------|--------------------|-------|---------------------------------------|---------|---------|--------------------|-------|
| — 头短 —         | 硝酸盐     | 硫酸盐     | 铵盐                 | 504   | ————————————————————————————————————— | 硝酸盐     | 硫酸盐     | 铵盐                 | 504   |
| Case           | Nitrate | Sulfate | Ammonium           | SUA   | Case                                  | Nitrate | Sulfate | Ammonium           | SOA   |
| SEN1           | -3.50   | 5.55    | -0.48              | 3.56  | SEN8                                  | -10.94  | -2.59   | -6.51              | 5.89  |
| SEN4           | 0.57    | -6.97   | -1.47              | -0.44 | SEN8-SEN2-SEN5                        | 0.21    | -2.53   | -0.52              | 0.17  |
| SEN1+SEN4      | -2.93   | -1.42   | -1.95              | 3.12  | SEN3                                  | -29.42  | 22.70   | -10.02             | 4.97  |
| SEN7           | -2.63   | -1.60   | -1.81              | 3.34  | SEN6                                  | 2.01    | -20.48  | -4.13              | -0.31 |
| SEN7-SEN1-SEN4 | 0.30    | -0.18   | 0.14               | 0.22  | SEN3+SEN6                             | -27.41  | 2.22    | -14.15             | 4.66  |
| SEN2           | -12.45  | 13.45   | -3.23              | 5.98  | SEN9                                  | -27.59  | -4.01   | -16.06             | 4.84  |
| SEN5           | 1.30    | -13.51  | -2.76              | -0.26 | SEN9-SEN3-SEN6                        | -0.18   | -6.23   | -1.91              | 0.18  |
| SEN2+SEN5      | -11.15  | -0.06   | -5.99              | 5.72  |                                       |         |         |                    |       |

#### 2.3.4 AWC 对协同效应的影响

由于 NO<sub>2</sub> 和 SO<sub>2</sub> 在形成 PM<sub>2.5</sub> 重要组分硝酸盐 和硫酸盐的非均相过程中,可以增强颗粒物的吸湿 性,气溶胶水的增加进一步促进非均相反应的进 行,尤其是 NO<sub>2</sub> 生成的硝酸盐水溶性比矿物质气溶 胶高几个数量级,这使得 NO<sub>x</sub> 和 SO<sub>2</sub> 在 PM<sub>2.5</sub> 生成 过程中互相促进。因此,NO<sub>x</sub> 和 SO<sub>2</sub> 在 PM<sub>2.5</sub> 生成 过程中互相促进。因此,NO<sub>x</sub> 和 SO<sub>2</sub> 共同减排比分 开减排对颗粒物污染防治更有效。为探究 AWC 对 协同效应的影响,对 REF 和各 SEN 中的 AWC 进行 分析(表 10)。当 NO<sub>x</sub> 和 SO<sub>2</sub> 分别减排 25% 时, AWC 均呈现微弱上升,分别为 0.18%、0.44%, 但 NO<sub>x</sub>和 SO<sub>2</sub> 的同时减排使 AWC 下降 0.60%。当 NO<sub>x</sub> 减排比例较高时,对 AWC 影响较大,当 NO<sub>x</sub> 减排 50% 和 75% 时,AWC 可分别降低 6.30% 和 15.51%。SO<sub>2</sub>对 AWC 影响微弱,是因为硫酸盐水 溶性相比硝酸盐较低。当 NO<sub>x</sub>和 SO<sub>2</sub> 同时减排时, 更有利于 AWC 的降低。当减排比例为 25%、50% 和 75% 时,同时减排比分开减排可使 AWC 多降低 1.22%、1.10% 和 2.49%,这也解释了同时减排比分 开减排更有利于颗粒物污染防治的原因。

#### 地球环境学报

| AWC 的平均质量浓度                                           |       |        |  |  |  |  |  |  |
|-------------------------------------------------------|-------|--------|--|--|--|--|--|--|
| Tab. 10 Averaged mass concentration of AWC in REF and |       |        |  |  |  |  |  |  |
| SEN from 2 to 14 January 2019 in GZB                  |       |        |  |  |  |  |  |  |
| 实验 Case AWC/(μg·m <sup>-3</sup> ) 变化率 Change rate /%  |       |        |  |  |  |  |  |  |
| REF                                                   | 61.25 | -      |  |  |  |  |  |  |
| SEN1                                                  | 61.36 | 0.18   |  |  |  |  |  |  |
| SEN2                                                  | 57.39 | -6.30  |  |  |  |  |  |  |
| SEN3                                                  | 51.75 | -15.51 |  |  |  |  |  |  |
| SEN4                                                  | 61.52 | 0.44   |  |  |  |  |  |  |
| SEN5                                                  | 61.28 | 0.05   |  |  |  |  |  |  |
| SEN6                                                  | 60.56 | -1.13  |  |  |  |  |  |  |
| SEN7                                                  | 60.88 | -0.60  |  |  |  |  |  |  |
| SEN8                                                  | 56.75 | -7.35  |  |  |  |  |  |  |
| SENIO                                                 | 40.52 | 10.12  |  |  |  |  |  |  |

表 10 关由分抽 2019 年 1 目 2—14 日 RFF 和 SFN 由

# 3 结论

利用 WRF-Chem 模式对关中地区 2019 年 1 月 2—14 日一次重污染天气过程进行模拟然后进 行了 9 个敏感性实验,以此评估 NO<sub>x</sub> 和 SO<sub>2</sub> 减排 对 PM<sub>2.5</sub> 污染控制的影响以及 NO<sub>x</sub> 和 SO<sub>2</sub> 减排在 PM<sub>2.5</sub> 污染控制中的协同作用,探究如何在减排量 固定的情况下取得最大的减排效果:

(1)对2013—2018年关中地区冬季大气 污染物观测数据进行分析,发现关中盆地大气中 CO、SO<sub>2</sub>、NO<sub>2</sub>、PM<sub>2.5</sub>质量浓度总体呈现下降趋 势,其中SO<sub>2</sub>下降幅度最为明显。而O<sub>3</sub>浓度总 体呈上升趋势,2018年冬季相对于2013年上升 22.09%。西安2013—2018年冬季 PM<sub>2.5</sub>重要组分 OC/EC均大于3,表明二次气溶胶在关中盆地冬 季颗粒物污染中占有重要作用。

(2)通过将模式模拟结果与观测数据进行对 比以评估模式模拟能力。总体上,该模式较好地 重现了模拟期间的气象场(温度、相对湿度、风 速和风向)、大气污染物(PM<sub>2.5</sub>、O<sub>3</sub>、NO<sub>2</sub>、SO<sub>2</sub> 和 CO)以及气溶胶重要组分(OA、硝酸盐、硫 酸盐和铵盐)的日变化趋势,为进一步的敏感性 实验提供了可靠的基础。但由于排放清单和气象 场模拟的不确定性,模式模拟结果与观测数据仍 然存在偏差。

(3)当 MEIC 排放清单中 NO<sub>x</sub> 排放量减少时,大气中 NO<sub>2</sub>浓度下降。由于 NO 对 O<sub>3</sub> 的滴定效应,O<sub>3</sub>浓度上升,大气氧化能力增加,促进了 NO<sub>2</sub>、SO<sub>2</sub>、NH<sub>3</sub>、VOCs 向硝酸盐、硫酸盐、铵 盐和 SOA 的转化,削弱了 PM<sub>2.5</sub> 的减排效果。当 MEIC 排放清单中 SO<sub>2</sub> 排放量减少时,大气中 SO<sub>2</sub>

浓度和 PM<sub>2.5</sub> 中硫酸盐浓度下降明显。由于硫酸盐 在 PM<sub>2.5</sub> 中占比较低(8.62%), PM<sub>2.5</sub> 减排效果 比较有限。当 NO<sub>x</sub>和 SO<sub>2</sub> 同时减排 25%、50% 和 75% 时, PM<sub>2.5</sub> 分别下降 0.35%、2.27%、7.09%。

(4)将 NO<sub>x</sub>和 SO<sub>2</sub>分开减排与同时减排结果 进行比较,发现当减排比例较高时,NO<sub>x</sub>和 SO<sub>2</sub> 同时减排更有利于颗粒物污染防治。PM<sub>2.5</sub>质量浓 度在 NO<sub>x</sub>和 SO<sub>2</sub> 同时减排 75% 时比分开减排 75% 时多下降 0.75%,主要是硫酸盐下降所致。对各 个敏感性实验中的 AWC 分析发现,NO<sub>x</sub>对 AWC 影响较大。当减排比例为 25%、50% 和 75% 时, 同时减排比分开减排可使 AWC 多降低 1.22%、 1.10% 和 2.49%。当 AWC 更低时,更不利于二次 颗粒物中硫酸盐、硝酸盐和铵盐的生成。

#### 参考文献

- 贝耐芳, 冯 添, 吴佳睿, 等. 2017. 西安地区夏季臭氧的 模拟研究 [J]. *地球环境学报*, 8(6): 552–567. [Bei N F, Feng T, Wu J R, et al. 2017. Simulations of summertime ozone in Xi'an and surrounding areas [J]. *Journal of Earth Environment*, 8(6): 552–567.]
- 韩力慧,陈媛媛,贾 龙,等.2014. NO<sub>2</sub>在 MgO 颗粒 物表面的非均相反应 [J]. *中国科学:化学*,44(12): 2004-2012. [Han L H, Chen Y Y, Jia L, et al. 2014. Heterogeneous reactions of NO<sub>2</sub> on the surface of MgO particles [J]. *Scientia Sinica Chimica*,44(12): 2004-2012.]
- 胡 琳,张 侠,苏 静,等. 2019. 陕西省霾天气变化特征 及气候成因分析 [J]. *干旱区地理*, 42(4): 707-714. [Hu L, Zhang X, Su J, et al. 2019. Variation characteristics of haze weather and its climatic causes in Shaanxi Province [J]. *Arid Land Geography*, 42(4): 707-714.]
- 贾小红, 王 甫, 任 燕, 等. 2021. SO<sub>2</sub>、NO<sub>2</sub> 与针铁矿、 赤铁矿、磁铁矿的非均相反应 [J]. *地球化学*, 50(1): 88-97. [Jia X H, Wang F, Ren Y, et al. 2021. Heterogeneous reactions of SO<sub>2</sub> and NO<sub>2</sub> with goethite, hematite, and magnetite [J]. *Geochimica*, 50(1): 88-97.]
- 李晓配,贝耐芳,赵琳娜. 2017. 气象条件对 2013—2015 年 冬季关中地区空气质量的影响 [J]. *地球环境学报*, 8(6): 516–523. [Li X P, Bei N F, Zhao L N. 2017. Influence of meteorological conditions on the wintertime air quality in the Guanzhong Basin during 2013 to 2015 [J]. *Journal of Earth Environment*, 8(6): 516–523.]
- Akpinar S, Oztop H F, Kavak Akpinar E. 2008. Evaluation of relationship between meteorological parameters and air

pollutant concentrations during winter season in Elaziğ, Turkey [J]. *Environmental Monitoring and Assessment*, 146(1/2/3): 211–224.

- Bei N F, Li G H, Molina L T. 2012. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign [J]. Atmospheric Chemistry and Physics, 12: 11295-11308.
- Bei N F, Wu J R, Elser M, et al. 2017. Impacts of meteorological uncertainties on the haze formation in Beijing-Tianjin-Hebei (BTH) during wintertime: a case study [J]. Atmospheric Chemistry and Physics, 17(23): 14579-14591.
- Binkowski F S, Roselle S J. 2003. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description [J]. *Journal of Geophysical Research: Atmospheres*, 108(D6): 4183. DOI: 10.1029/2001JD001409.
- Chow J C, Watson J G, Lu Z Q, et al. 1996. Descriptive analysis of PM<sub>2.5</sub> and PM<sub>10</sub> at regionally representative locations during SJVAQS/AUSPEX [J]. *Atmospheric Environment*, 30(12): 2079–2112.
- Clifton C L, Altstein N, Huie R E. 1988. Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over the pH range 5.3—13 [J]. *Environmental Science & Technology*, 22(5): 586–589.
- Deng X J, Wu D, Yu J Z, et al. 2013. Characterization of secondary aerosol and its extinction effects on visibility over the Pearl River Delta Region, China [J]. *Journal of the Air & Waste Management Association*, 63(9): 1012–1021.
- Donahue N M, Robinson A L, Stanier C O, et al. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics [J]. *Environmental Science & Technology*, 40(8): 2635–2643.
- Feng T, Li G H, Cao J J, et al. 2016. Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China [J]. Atmospheric Chemistry and Physics, 16(15): 10045–10061.
- Feng T, Zhao S Y, Bei N F, et al. 2019. Secondary organic aerosol enhanced by increasing atmospheric oxidizing capacity in Beijing-Tianjin-Hebei (BTH), China [J]. *Atmospheric Chemistry and Physics*, 19(11): 7429-7443.
- Feng T, Zhao S Y, Zhang X, et al. 2020. Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong Basin, central China [J]. *Science of*

*the Total Environment*, 745: 140961. DOI: 10.1016/ j.scitotenv.2020.140961.

- Galindo N, Varea M, Gil-Moltó J, et al. 2011. The influence of meteorology on particulate matter concentrations at an urban Mediterranean location [J]. Water, Air, & Soil Pollution, 215(1/2/3/4): 365–372.
- Grell G A, Peckham S E, Schmitz R, et al. 2005. Fully coupled "online" chemistry within the WRF model [J]. *Atmospheric Environment*, 39(37): 6957–6975.
- Griffith S M, Huang X H H, Louie P K K, et al. 2015. Characterizing the thermodynamic and chemical composition factors controlling PM<sub>2.5</sub> nitrate: insights gained from two years of online measurements in Hong Kong [J]. Atmospheric Environment, 122: 864–875.
- Guenther A, Karl T, Harley P, et al. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J]. *Atmospheric Chemistry and Physics*, 6(68): 3181–3210.
- He H, Wang Y S, Ma Q X, et al. 2014. Mineral dust and NO<sub>x</sub> promote the conversion of SO<sub>2</sub> to sulfate in heavy pollution days [J]. *Scientific Reports*, 4: 4172. DOI: 10.1038/srep04172.
- Hu J L, Wu L, Zheng B, et al. 2015. Source contributions and regional transport of primary particulate matter in China [J]. *Environmental Pollution*, 207: 31–42.
- Hung H M, Hoffmann M R. 2015. Oxidation of gas-phase SO<sub>2</sub> on the surfaces of acidic microdroplets: implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase [J]. *Environmental Science & Technology*, 49(23): 13768–13776.
- Kim Y P, Moon K C, Lee J H, et al. 1999. Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea [J]. Atmospheric Environment, 33(17): 2751–2758.
- Krotkov N A, McLinden C A, Li C, et al. 2016. Aura OMI observations of regional SO<sub>2</sub> and NO<sub>2</sub> pollution changes from 2005 to 2015 [J]. *Atmospheric Chemistry and Physics*, 16(7): 4605–4629.
- Le T H, Wang Y, Liu L, et al. 2020. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China [J]. *Science*, 369(6504): 702–706.
- Lei W F, Zhang R Y, Tie X X, et al. 2004. Chemical characterization of ozone formation in the Houston-Galveston area: a chemical transport model study [J].

- Levy M, Zhang R Y, Zheng J, et al. 2014. Measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry during the 2009 SHARP field campaign [J]. *Atmospheric Environment*, 94: 231–240.
- Li G H, Bei N F, Tie X X, et al. 2011a. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/ MILAGRO campaign [J]. Atmospheric Chemistry and Physics, 11(11): 5169–5182.
- Li G H, Lei W, Bei N F, et al. 2012. Contribution of garbage burning to chloride and PM<sub>2.5</sub> in Mexico City [J]. *Atmospheric Chemistry and Physics*, 12(18): 8751-8761.
- Li G H, Lei W, Zavala M, et al. 2010. Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign [J]. *Atmospheric Chemistry and Physics*, 10(14): 6551-6567.
- Li G H, Zhang R Y, Fan J W, et al. 2005. Impacts of black carbon aerosol on photolysis and ozone [J]. *Journal of Geophysical Research: Atmospheres*, 110(D23): D23206. DOI: 10.1029/2005JD005898.
- Li G, Zavala M, Lei W, et al. 2011b. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign [J]. *Atmospheric Chemistry and Physics*, 11(8): 3789-3809.
- Li K J, Kong L D, Zhanzakova A, et al. 2019. Heterogeneous conversion of SO<sub>2</sub> on nano α-Fe<sub>2</sub>O<sub>3</sub>: the effects of morphology, light illumination and relative humidity [J]. *Environmental Science: Nano*, 6(6): 1838–1851.
- Li M, Zhang Q, Kurokawa J, et al. 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP [J]. *Atmospheric Chemistry and Physics*, 17(2): 935–963.
- Lin X, Du Z C, Liu Y, et al. 2021. The short-term association of ambient fine particulate air pollution with hypertension clinic visits: a multi-community study in Guangzhou, China [J]. Science of the Total Environment, 774: 145707. DOI: 10.1016/j.scitotenv.2021.145707.
- Liu L, Bei N F, Hu B, et al. 2020. Wintertime nitrate formation pathways in the North China Plain: importance of N<sub>2</sub>O<sub>5</sub> heterogeneous hydrolysis [J]. *Environmental Pollution*, 266: 115287. DOI: 10.1016/j.envpol.2020.115287.

- Ma Q X, He H, Liu Y C. 2010. *In situ* DRIFTS study of hygroscopic behavior of mineral aerosol [J]. *Journal of Environmental Sciences*, 22(4): 555–560.
- Nenes A, Pandis S N, Pilinis C. 1998. ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols [J]. Aquatic Geochemistry, 4: 123-152.
- Pathak R K, Wang T, Ho K F, et al. 2011. Characteristics of summertime PM<sub>2.5</sub> organic and elemental carbon in four major Chinese cities: implications of high acidity for water-soluble organic carbon (WSOC) [J]. *Atmospheric Environment*, 45(2): 318–325.
- Pilinis C, Seinfeld J H, Grosjean D. 1989. Water content of atmospheric aerosols [J]. *Atmospheric Environment*, 23(7): 1601–1606.
- Robinson A L, Donahue N M, Shrivastava M K, et al. 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging [J]. *Science*, 315(5816): 1259–1262.
- Saathoff H, Naumann K H, Möhler O, et al. 2009. Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene [J]. *Atmospheric Chemistry and Physics*, 9(5): 1551–1577.
- Sarwar G, Fahey K, Kwok R, et al. 2013. Potential impacts of two SO<sub>2</sub> oxidation pathways on regional sulfate concentrations: aqueous-phase oxidation by NO<sub>2</sub> and gasphase oxidation by Stabilized Criegee Intermediates [J]. *Atmospheric Environment*, 68: 186–197.
- Seinfeld J H, Pandis S N. 2006. Atmospheric chemistry and physics: from air pollution to climate change [M]. 2nd edition. New York: John Wiley & Sons.
- Seinfield J H. 1988. Ozone air-quality models: closing remarks [J]. JAPCA: The International Journal of Air Pollution Control and Hazardous Waste Management, 38(9): 1136–1137.
- Shah V, Jacob D J, Li K, et al. 2020. Effect of changing NO<sub>x</sub> lifetime on the seasonality and long-term trends of satelliteobserved tropospheric NO<sub>2</sub> columns over China [J]. *Atmospheric Chemistry and Physics*, 20(3): 1483–1495.
- Shen F Z, Ge X L, Hu J L, et al. 2017. Air pollution characteristics and health risks in Henan Province, China [J]. *Environmental Research*, 156: 625–634.
- Shen X J, Sun J Y, Zhang X Y, et al. 2019. Variations in submicron aerosol liquid water content and the contribution of chemical components during heavy

aerosol pollution episodes in winter in Beijing [J]. *Science of the Total Environment*, 693: 133521. DOI: 10.1016/ j.scitotenv.2019.07.327.

第5期

- Sievering H, Boatman J, Gorman E, et al. 1992. Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols [J]. *Nature*, 360(6404): 571-573.
- Song J, Lei W, Bei N, et al. 2010. Ozone response to emission changes: a modeling study during the MCMA-2006/ MILAGRO Campaign [J]. Atmospheric Chemistry and Physics, 10(8): 3827–3846.
- Sullivan R C, Moore M J K, Petters M D, et al. 2009. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles [J]. *Atmospheric Chemistry and Physics*, 9(10): 3303–3316.
- Turpin B J, Huntzicker J J. 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS [J]. *Atmospheric Environment*, 29(23): 3527–3544.
- Wang X F, Wang W X, Yang L X, et al. 2012. The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze

conditions [J]. Atmospheric Environment, 63: 68-76.

- Wang Y G, Ying Q, Hu J L, et al. 2014. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013—2014 [J]. *Environment International*, 73: 413–422.
- Wesely M L. 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models [J]. *Atmospheric Environment*, 23(6): 1293–1304.
- Zhang Q, Streets D G, Carmichael G R, et al. 2009. Asian emissions in 2006 for the NASA INTEX-B mission [J]. *Atmospheric Chemistry and Physics*, 9(14): 5131–5153.
- Zhang R Y, Wang G H, Guo S, et al. 2015. Formation of urban fine particulate matter [J]. *Chemical Reviews*, 115(10): 3803-3855.
- Zheng B, Tong D, Li M, et al. 2018. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 18(19): 14095-14111.
- Zhou S Z, Wang Z, Gao R, et al. 2012. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China [J]. *Atmospheric Environment*, 63: 203–212.