• 网站首页
  • 期刊简介
  • 编委会
  • 投稿须知
  • 绘图要求
  • 期刊订阅
  • 联系我们
  • English

用户登录

  • 作者登录
  • 审稿登录
  • 编辑登录
  • 读者登录

在线期刊

  • 当期目次

  • 过刊浏览

  • Email Alert

  • RSS

  • 文章点击排行

  • 文章下载排行

下载专区

  • 中国科学引文数据库(CSCD)来源期刊列表(2021—2022年度)

  • 2018年中国科技核心期刊目录(自然科学卷)

  • 标点符号用法

  • 《地球环境学报》绘图要求

  • 《地球环境学报》征稿简则

  • 2017年中国科技核心期刊目录(自然科学卷)

  • 2016年中国科技核心期刊目录 (自然科学卷)

  • 国标文献著录格式

友情链接

  • 中国科学院
  • 国家自然科学基金委员会
  • 中华人民共和国科学技术部
  • 中国科学院地球环境研究所
  • 中国科学院地球环境研究所...
引用本文:孙 科,王 锐,周 锟,贺 铸,刘少杰.2017.微细颗粒物的边界层近壁面运动[J].地球环境学报,8(6):578-585
SUN Ke, WANG Rui, ZHOU Kun, HE Zhu , LIU Shaojie.2017.Movement of micro- & fine-particles in boundary layer and near-wall area[J].Journal of Earth Environment,8(6):578-585
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4842次   下载 3829次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
微细颗粒物的边界层近壁面运动
孙 科,王 锐,周 锟,贺 铸,刘少杰
武汉科技大学 省部共建耐火材料与冶金国家重点实验室,武汉430081
摘要:
颗粒污染物(如PM10等)在暴露体附近壁面的流动很普遍,与背景流场作用和运动归宿较复杂,且具较大研究和实用意义。本文采用近壁面湍流模型对典型直管边界层颗粒流进行模拟,研究直管湍流中颗粒沉积等特性。研究发现:在本模拟条件下,采用增强壁面模型所得流动与前人DNS结果较吻合,所得颗粒无量纲沉积速度在前人研究结果区间内。无量纲沉积速度随无量纲松弛时间增大而增大,但略有不同。在无量纲松弛时间较小且壁摩擦速度较小时,近壁面模型影响较大。当颗粒数St>1时,通过率随St增加而减小,随摩擦速度增大而增大;当St较小时不受影响。本研究初步给出不同近壁面湍流模型对暴露体附近湍流和颗粒流动的影响,有利于颗粒污染物的暴露研究和控制。
关键词:  雾霾气溶胶  近壁湍流态  颗粒踪迹去向  沉积和通过  近壁面模型
DOI:10.7515/JEE201706009
CSTR:32259.14.JEE201706009
分类号:
基金项目:国家自然科学基金项目(11602179)
英文基金项目:National Natural Science Foundation of China (11602179)
Movement of micro- & fine-particles in boundary layer and near-wall area
SUN Ke, WANG Rui, ZHOU Kun, HE Zhu , LIU Shaojie
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract:
Background, aim, and scope Particle contaminant (e.g. PM10 & PM2.5) flow around an exposed body is commonly existed in nature, and its interaction with background flow and its fate are complicated and valuable for further research and application. Materials and methods This paper adopts turbulent and near-wall model to numerically simulate typical boundary layer and near-wall particle flow in a straight duct, and to study the detail particle deposition and penetration process in the turbulent flow. Results Under current simulation conditions, the flow behavior based on the Reynolds Stress Model and Enhanced near-wall model agrees well with previous Direct Numerical Simulation (DNS) results, while predictions from other near-wall models show partial agreements and partial discrepancies. The obtained dimensionless particle deposition velocities (DPDVs) based on these two models are generally among the range areas of literature experiment and DNS results, although differences exist. Discussion DPDVs increase with dimensionless particle relaxation times (DPRTs) increase between 4.2×10−3 < τp+ < 6.8×102, but the increasing trend is slightly different from literature data trends. The above phenomena may be attributed to different simulation and experimental conditions for different literature works. When the DPRT τp+ <1.9×10−2 and the near-wall frictional velocity u*≤19 cm ∙ s−1, the effects of different near-wall models are obvious; while above these DPRT and frictional velocity values, the near-wall models impose slightly on DPDV. Under St>1 condition, the particle penetration decreases with St increase and it increase with u* increase. Under St <1 condition, the St number has no influence on the penetration. Conclusions In short, this investigation preliminarily gives the effects of different near-wall models on nearby turbulence and particle flow of an exposed body, and this research also obtains the characteristics of particle flow fate. Recommendations and perspectives Further studies are recommended to be conduct on the interacting and modeling among turbulence, near-wall boundary layer and particle flow. These studies are believed to be useful for exposure research and effective control of particle contaminant.
Key words:  mist / fog aerosol  near wall turbulence  particle trace & fate  deposition & penetration  near wall model
您是本站第  访问者
版权所有:《地球环境学报》编辑部 陕ICP备11001760号-3
主办:中国科学院地球环境研究所 地址:西安市雁塔区雁翔路97号 邮政编码:710061
电话:029-62336252 电子邮箱:jee@ieecas.cn
技术支持:北京勤云科技发展有限公司